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We consider a time-dependent, energy-dependent, nonlinear radiative transfer
problem in which opacities are larg®[s~1)] and interior sources are sma[e)].
An asymptotic analysis of this problem as> 0 leads to the equilibrium diffusion
equation in the interior of the system, along with boundary conditions and initial
conditions for this equation. We apply the same asymptotic analysis to a discrete ver-
sion of the problem, in which the frequency variable is discretized by the multigroup
method, the direction variable by the discrete-ordinates method, the time variable by
the fully implicit method, and the spatial variable by a subcell-balance method. We
find that ase — O the discrete solution satisfies a robust discretized version of the
correct equilibrium diffusion equation, with boundary conditions and initial condi-
tions that are remarkably accurate. The analysis thus predicts that if a spatial grid
is chosen that resolves interior temperature gradients, then the numerical method
obtains an accurate solution in the interior of the system, even though the optical
thickness of the spatial cells tendstoand boundary layers in the transport solution
are not resolved. We go a step further to analyze problems that are optically thin at
some photon frequencies but thick at others, and show that once again the discrete
solution is remarkably accurate. We present numerical results that verify these and
other predictions of the analysesg 1998 Academic Press

Key Wordsradiative transfer; asymptotic analysis; computational transport; spatial
discretization.

I. INTRODUCTION

The motivation for this work is the need to obtain accurate numerical solutions
radiative-transfer problems of practical interest. Often in such problems there are opitic
thick regions in which absorption and re-emission are the dominant physical processe:

366

0021-9991/98 $25.00
Copyright© 1998 by Academic Press
All rights of reproduction in any form reserved.



ANALYSIS OF COMPUTATIONAL METHOD FOR RADIATIVE TRANSFER 367

determine the radiation energy density. Such regions are “diffusive” in the sense that in
interiors the radiation energy density, to leading order, satisfies the “equilibrium” diffus
equation [1].

Most practical radiative-transfer problems cannot be solved analytically and hence rec
numerical methods. The extreme optical thickness of these problems forces spatial
to be very coarse, with cells that are thousands of mean-free paths thick (or more) in
frequency groups. Itis therefore important to understand how numerical methods beha
optically thick regions with coarse spatial grids. Many studies have been done on this sut
but most consider a relatively simple problem: linear, steady-state, single frequency g
[2-5]. A recent study [6] considered a more realistic problem with an arbitrary numbe
frequency groups, butitwas also linear and steady state. In avery recent development, |
et al.[7] studied a realistic radiative-transfer problem that is nonlinear, time dependent,
frequency dependent. The authors performed an asymptotic analysis of a discrete ve
of this problem, in which the frequency variable is discretized by the multigroup meth
the direction variable by discrete ordinates, the time variable fully implicitly, and the spa
variable by a linear discontinuous finite-element method with mass-matrix lumping (
“lumped linear discontinuous” method, or “LLD"). Their study assumes one-dimensio
planar symmetry. Their analysis and numerical results show that the discrete solutic
fairly accurate, even when the spatial grid does not resolve boundary layers. This
remarkable result, because the optical thickness of the spatial cells in these problems
toward oo, and transport discretizations are usually known to be accurate only when
optical thickness of spatial cells is much less than unity.

The work we present here complements that of Metell. The main differences are:

e We introduce the “simple” corner-balance (SCB) method, which is based on
forcing energy conservation on subcells. We describe SCB for an arbitrary grid in
dimensions and show it in detail for planar (slab) geometry.

e In slab geometry, SCB is almost identical to LLD; however, our SCB method ut
a different opacity in each subcell, whereas the LLD method analyzed by Eloatluses
a single opacity throughout each cell.

e We present an analysis of the “initial layer,” obtaining initial conditions satisfied |
the leading-order discrete solution. We compare these against the initial conditions sati
by the leading-order exact solution and show that they are almost identical.

e We perform a thorough analysis of boundary-layer behavior, using a model opa
to make sharp predictions about the behavior of the SCB, LLD, and exact solution
problems with different incident photon distributions.

e We analyze problems that are optically thick in some frequency ranges but optic
thin in others. This kind of problem is often encountered in practice.

e We manipulate the boundary condition for the leading-order interior solution int
form that is an obvious generalization of that obtained by previous one-group studies.

e We study a wider variety of test problems, including several with wave fronts &
with severe boundary layers.

The remainder of this paper is organized as follows. In the next section we desc
the problem and summarize what is known about its analytic solution in thick diffus
regions. In Section Il we present an SCB method and use it to discretize the radia
transfer problem. In Section IV we use an asymptotic analysis to show that the SCB solt
satisfies, to leading order in thick diffusive regions, a robust and accurate discretizatic
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the equilibrium diffusion equation. We derive the initial and boundary conditions satisf
by this leading-order solution. This analysis predicts that the SCB scheme will achi
reasonably accurate numerical results inside the physical system even if the grid doe
resolve boundary layers or initial layers in the transport solution. Section V is devote
analyzing problems that are thick in certain frequency ranges, but thin or intermediat
others. In Section VI we test the predictions of the asymptotic analysis with a series of ste
state and transient test problems, some of which have extremely sharp boundary layel
some of which have wave fronts moving through the slab. We offer some concluding rem
in the final section.

II. ANALYSIS OF ANALYTIC SOLUTION
We consider the planar-geometry radiative transfer problem

T T
E%a v, t>+u—“’<x v, t>+"(x’f"’)w(x,u, bt) = "(X’T"’)Bw,n, )

£Cp(X, T) / / O(X—”T)w(x 1,0, 0) — B, Tl dudv +£Qx, 1), (2)

YO, u,v,t) = F(u, v, t), O<pu<l, (3a)
Y(X, w, v, 1) = G(u, v, 1), -1<u<0, (3b)
I//(Xv um, v, 0) = I/fi(X, Mvv)v (4)

T(x,0) = Ti(x), (5)

whereB is the Planck function (integrated over the azimuthal direction, yielding a fac
of 2z to which the reader may not be accustomed):

4hy3 1

We also define the radiation energy density:

00 1
Er(X, 1) = aTA(x, 1) = %/ dv/ du (X, i, v, t). (7)
0 -1

If we set the parameterto unity, then Egs. (1)—(5) constitute a radiative-transfer proble
in standard notatiortis the speed of lighty (x, u, v, t) is the specific intensity of particles
at pointx traveling in the “direction’u at timet, o (X, v, T) is the opacity of the mate-
rial at x at frequency given a material temperatuiie(x, t), Q(x, t) is the interior heat
source h is Planck’s constank is Boltzmann’s constant, aralis the radiation constant
(87°%k*)/(15n3c3).

If we take the functiong/, o, T, andB to be scaled such that they &Bg1), and lete
be a small parameter that tends toward zero, then Egs. (1)—(5) are the starting point f
asymptotic analysis. The reader is encouraged to consult Refs. [1, 8] for justification
this scaling and for details concerning the asymptotic analysis that we will now summa
specifically for slab geometry. Larsenal show [1] that away from boundaries, as> 0
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the leading-order analytic solution is Planckian,
YO v, ) =B(v, TOX, 1), (®)
where the leading-order temperatré satisfies the energy-balance equation

9 4 aTO  3J®
] ] —
az [(T )]+Cp(x,T ) P + o = Q(x, t), 9)

where the @¢) “net flux” or “net current density’J® is

ac 3(TO)*
IV = - (r®) (10)
3or(x, TO)  ax
Here we have used the Rosseland mean opacity:
o0 1 B, T) o0 1 B, T)
1 _ fo sooom ot dv _ Jo s ot dv (11)
or(x, T) Jo" % dv 4acT3 '
We can combine Egs. (9) and (10) to form a diffusion equation:
4
3 4 aTO 9 ac A(T@)
a—[(T® } Cp(x, TO - - Q(x.1). (12
at |:( ) + P( ) ot X 3UR(X,T(O)) X Q( ) ( )

Pomraning [8] analyzes the “initial-layer” problem to find the initial condition for th
leading-order temperature

00 1
qﬂ%me+EU@aﬁn=%/‘d{/duma4aw+Ema»
0 -1

whereE is the matter energy density. In our formulation of Eq. (2) we have assumed |
dE/dt = C,(T) dT/dt, which leads to

_ 0 1 _
a[T(°>(x,0)}4+cp(x)T<°>(x, 0) = %/ dv/ duii (X, i, v) + Cp(X)Ti(X), (13)
0 -1

whereC, p(X) is an average over the intenv@l (x), T@(x, 0)). Thus, theT © that satisfies
this equation is the appropriate initial condition for our Eq. (12).

Pomraning also develops a half-space problem whose solution would yield the boun
condition satisfied by the leading-order temperature. This problem appears too diff
to solve analytically, but Pomraning uses a variational procedure to find an approxir
solution. At the left boundary in our planar problem, for example, this yields

TOX, )xo ~ T, where

1 Fw, u,t) — B(v, TE
ac(TVa?* = aC(T,ﬁX)4 +oR (0, T,S'X) /dv/ du3u? W, i 0 (v M )
0

o0V T

(14a)
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where we have defined the exact “Marshak” boundary temperature:

1
ac(T,Slx)4=2/dv/ du2uF o, w,1). (14b)
0

Similarly, at the right boundary Pomraning’s result is

TOX, t)|x=x ~ T,  where
G, u,t) — B(v, T,ax)
ac(T@* = ac(T& (X, T /d /0132 , (15a
( ) ( M) +0R v I’L O'(X, l)7-|—'\(3|X) ( )
0
ac(TﬁX)“zz/dv/ dp2in|G, w, ). (15b)
-1

We can rewrite Pomraning’s boundary condition in a form that more closely resemt
results from one-frequency-group diffusive problems. We define a Planckian-weightec
verse opacity:

Bv, ) 1 } .
/dva(x’ o) = or 2acT . (16)

Then if we make liberal use of the definition (14b), it is possible to manipulate Eq. (1
into the form

ac(TVa4 = /dv/ du

We note that given only one frequency group the opacity ratios become unity, and we |

_or(0.TH) 2 or(0, )
21 (2 (O Tex )> + 3u a(O, V7T§|X) Fv, u,t). (17)

1
(Tlvagjrp) =/OdM[2M+3M2]F(u,t). (18)

(Similar results hold at the right boundary.) This is a variational approximation to the ex
one-group boundary condition

1
ac(Ti%y)" = [ dn2WGoF .. (19)

whereW(u) is a known tabulated function/3u /2 times Chandrasekharts -function),
which has the approximations

W(u) = 0.9 + 1.63542 + a few %=~ pu + 3u?/2. (20)

To summarize, as— 0, the leading-order part of the interior solution (valid away from th
initial layer att =0 and boundary layers at=0 andx = X) is defined by Eq. (8), where
the leading-order temperature satisfies Egs. (12), with initial condition given by Eq. (
and boundary conditions approximately given by Egs. (14) and (15). Thus, the asymp
interior transport solution satisfies a nonlinear one-group diffusion equation with knc
initial conditions and approximately known boundary conditions. In this paper we w
show that the asymptotic solution ofdiscretizedtransport equation satisfies a robus
discretization of this nonlinear diffusion equation, with boundary and initial conditions t
are very good approximations to those described above.
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lll. THE “SIMPLE” CORNER-BALANCE METHOD

We now describe the simplest member of a family of subcell-balance methods devel
recently for spatial discretization of the transport equation. This method was first descr
in a conference report [9] and generalized somewhat (for slab geometry) in a later sumi
[10]; more complete descriptions of it and a related method are found in Ref. [11].

We begin with a transport equationXY geometry

0 d > o
e na—;/: +oL YYD =Sy, &),  (xyeD,  (21a)

VXY, Q) =F(X Y, Q), (XyedD, AKX Y- -Q <0, (21b)

wheredD is the boundary of the spatial domaih andf is the outward unit normal.
We divide the problem domain into polygonal cells and divide each cell into quadrilate
subcells that we call “corners,” as shown in Fig. 1. The vectors appearing in Fig. 1 are ¢
lengths times outward unit normals for coree€ornerc has two neighboring corners inside
its polygonal cell, which we denote iy (counterclockwise front) andc, (clockwise).
The corner has four bounding surfaces. Two surfacemaidethe cell:s; (adjacent ta;)
ands, (adjacent tac,). The other two surfaces are on the cell boundary, and are denc
simply by “+” or “ —” subscripts as shown.

We integrate the transport equation over coroemnd use the divergence theorem t
obtain a statement of conservation, or “balance,” over the corner,

Q- [Aci Yot () + Ac_ o () + Boyp s, () + Bo_ ¥, (D)] + 0cVee(R) = VeS(),
(22)

whereV, is the area of the corner and subscripts on functions denote aveyagethe aver-
age over cornet, Y, is the average over the surfageetc. We use simple approximations
to close the system

Vs, = (Wc + Wcl)/zv (23a)
Vs, = (Vfc + 1//62)/2, (23b)

- cell midpoint /

cell boundary

FIG. 1. A*“corner” subcell,c, and its neighbors; andc,.
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(23c)

I//.C’ l&cj: . S_:Z > 0,
VYer = AR
Yinc.c+ (Known), Actr - Q2 < 0.

This is SCB in its original form. As presented, the method has the following known pre
erties [11]:

e Given rectangular cells, it is a robust and accurate method for one-group lir
steady-state problems that are optically thick and diffusive.

e Given nonrectangular cells it gives reasonable solutions for thick, diffusive ol
group linear steady-state problems, but its accuracy degrades as the grid distorts.

e lIts accuracy is relatively poor away from the thick diffusive limit.

To overcome the latter problem, Eaton and Adams replaced Eqg. (23c) in the one-dimens
SCB method with a more general equation, with very good results [10]. Adams toc
different approach in Ref. [11] to overcome this and other problems in a 2D setting, a
with good results. Both of the newer methods yield solutions that approach the SCB solt
in the limit of thick diffusive spatial cells, at least in one-group steady-state settings. Bece
the newer methods behave similarly in the thick diffusive limit, the behavior of the S(
solution in that limit is of significant interest.

In the planar-geometry problem considered in this paper, SCB consists of two exact
cell balance equations and two approximations per cell. The first approximation is tha
cell-midpoint intensity equals the average,

Vi = Wir+ ¥jL)/2, (24)
and the second is that the exiting intensity from a cell equals the upstream half-cell ave
¥R, 1<j<N, u>0
Vit12 = : . (25)
VYisl, O0<j<N-=1, pu<O.

Here the subscript refers to thejth cell andj £+ 1/2 to its edges. The subscriptk /j R
denote averages in the left/right halves of gelandu is thex-component of the direction
vector.

In the next section we apply SCB to the spatial variable in the radiative transfer equati
along with a finite-difference method for the time variable, the discrete-ordinates met
for the direction variable, and a multigroup method for the frequency variable. We tt
perform an asymptotic analysis of this fully discrete problem.

IV. ASYMPTOTIC ANALYSIS OF THE DISCRETE PROBLEM

When we apply the discrete-ordinateg J@ngular discretization, the multigroup dis-
cretization of frequency, and an (essentially) fully implicit (FI) time discretization to t
scaled equations (1)—(2), we obtain

& Ymg(X) — Yg(X)
c Aty

+
3

dwmg i og(X) Vmg(X) = og(X)

dx e e By(T), (26)

T =T e 0g(X)
gcpT =>"> wn gs [Ymg(X) — Bg(TOD] +eQ(x),  (27)

whereu is thex-component of the direction vecter, {(wm, um), Mm=1, ..., M} is the
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discrete-ordinates quadrature set, gnsithe frequency-group subscript. Here khsuper-
script indicates the beginning of the time stgp tx11), ¥ and T without superscript are
both time-step-averaged and end-of-step values,Qulalso averaged over the step. Tc
avoid restricting the validity of this analysis we do not specify the definitions of the opac
and the specific heat in these equations. The opacity, for example, could be held ex
(i.e., evaluated af ), made fully implicit (evaluated & = T+1), or anything in between
(such as evaluated at an extrapolated temperature).

We now apply the SCB spatial discretization [10], described in the preceding sect
to these equations. We assume a spatial gril oells, with cell edges defined by.1/2,
j =1,...,N. The subscript§R andjL indicate left and right half-cell averages, respec
tively, in cell j. First we average Egs. (26) and (27) over each half-cell:

k
€ ¥mgiR — ¥mg R

OgjRrR
c Aty *Ax; /2(¢m91+1/2 ¥mg.) +7 wmg,R = Bg.jr. (28a)
SwmgjL_wk I OgjL gn_
- o mg, j AX] /Z(I/fmgj Ymgj-1/2) + — YmgiL = BgjL. (28b)
T
Coin x5 ZZ Wm ngJH Bgjnl+eQju. H=LorR (29)

g=1m=1

Next we impose our closure approximations:

1
Vmgj = E(ng,jR + VYmg jL), (30a)
Fmg = Fg(um), ] =0, um>0;
¥mg iR 1<j<N,um>0;
~ = i 30b
Vmg j+1/2 Gmg = Gg(m)s | = N, pim < O (30b)
Vmg j+1.L 0<j<N-1umn<0

Here the sources and boundary conditions are averages over the time step:

1 et
QjHE— QH(t)dt H=LorR,
Aty
(31)
1 1 d 1 a1 d
Fro= — Fng(t) dt, Gng= — Gmo(t) dt.
mg Aty . mg( ) mg Aty /tk mg( )
Into these equations we introduce the expansions
VmgjH = Wrgwogjo"i_gwr(nlgjo"i_g IﬁrngéjH‘f‘ (32a)
Tin =T +eT§ +eT@ +---, (32b)

for each intensity and temperature that appears in the discrete system of equation:
introduce similar expansions for temperature-dependent quantities sucinakB.
In what follows we shall often make use of the following notation:

[fg]<k) = coefficient ofs¥ in the product of the expansions 6fandg.

Thus, for example dy]® is a compact way to write @y @ 4+ ¢ @y ©,
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A. Interior Analysis

From theO(1/¢) terms in Egs. (28) we find that

wr(r?é,jH = Bé?)H = Bg(Tj(ﬂ)), H=LorR, all j andg, (33)

where theTj(E') are as yet undetermined. This result, which states that the leading-order ¢

intensities are isotropic and Planckian, is exactly like the analytic result, Eq. (8).
If we add Eq. (28a) for celj to Eq. (28b) for cellj + 1, consider the @) terms, multiply
by wm, and sum over angles and groups, we obtain

a [AXj /)4 Ok 4\ | AXj41 /@ 4 Ok 14 &) &)
e | - (29" + 222 (10" - (%)) + 9
AX; AX;
+ZZwm{7'[a(wm ~B)JR+ T‘“[cf(wm —~ B)]E_f)m,L} =0,
g m

j=1....N—-1 (34

where the mid-cell “currents” (net fluxegf¥ are defined:

G M
Jj(l) = Z Z wmumlﬁ%- (35)

g=1m=1

In obtaining Eq. (34) we assumed that the leading-order intep$ity at timet, is Planckian
at the temperatur@ ©K. For all but the first time step we know from Eg. (33) that this i:
true, so Eq. (34) certainly holds fé&r> 0. We must defer a precise statement about tt
initial time step k = 0) until the initial-layer analysis in the next subsection.

We can simplify Eq. (34) somewhat by using tBé¢¢) terms from Eq. (29), which are

0 Ok

AX;j
— ——Qjn. 36
Aty 2 QJH (36)

AX; AX;
Z Z mej[U(l/fm - B)]E;Zj)H = T]C:)O)JH
g m
Using this equality we can rewrite Eq. (34) as
a ﬂ((T(O))“ _ (T(O)k)4) 4 AXin ((T(O) )t (TOX )4>
At | 2 iR iR —2 j+1LL j+1.L

1 [AXj 0 @ ok , AXj+1 () © Ok
+Atk[2 Coir(TR—TiR) + > Cpisnt (Tt — TiviL)

AXj+1
2

+4&—#D=$?Qm+ Qi j=1,...,N-1 (37)
We recognize that this is simply the spatial integral foonto x; 1 and time integral front
toty, 1 of the analytic leading-order energy balance equation (9), at least if the specific he
opacities, and net fluxes are appropriately time averaged. Thus, this equation is esset
exact.

The next part of this analysis will show that the leading-order temperatures are continu
thatis, thafl % = T¥ | . Itwill also find the leading-order temperatures in the bounda
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half-cells, T,” andT,%. We begin with theD(1) terms of Egs. (28) and (29):

AX /2 (wrgﬂoczl,jJrl/Z I‘(nof)}]) + [U (Wm B)]glj)R = (38&)
Ax: /Z(Wr%j - wrﬁ%j—l/z) +[o(Ym — B)]E;ll)L = (38h)
M
0= Z Z wm[o—(wm - B)]élj)H, H=LorR. (39)
g=1m=1

If we multiply Egs. (38) byw,, and sum ovem andg we obtain

G M
oD Y Wit (Vg 12 — Vi) +ZZwm[a<wm B)ljjx = 0. (40a)
1/ g=1m=1 g=1m=1
G M
= ZZ Wintm (Ving j — Vg j-1/2 +ZZwm[a<wm B)]giL = 0. (40b)
i/ g=1m=1 g=1m=1

We see from Eg. (33) tha/t/,%j is isotropic; thus, provided the quadrature set correct
integratesu to zero, thEl//é?éJ terms in Eqgs. (40) vanish. We shall hencefaisume a
symmetric quadrature sewhich does correctly integrajeto zero. We see from Eq. (39)

that the last double summation in each of Egs. (15) is zero, and we are left with

1m=1

G M

0 .
Zzwmﬂml/fr(n;j+1/2=0, j=0,...,N,
9=

which says that to leading order, the cell-edge net fluxes are zero. We can rewrite this

G G
DD wmktmYmg i1z =D D Walkm¥mgjiyz 1 =0 N (41)
9=1 m>0 9=1 um<0

If we consider interior cell edges, which means- 1, ..., N — 1, then by the definition

(30b) of the cell-edge angular fluxes we have

G G
Yo wntm¥imgir = > walumlVig i, i=1....,N-1

9=1 um>0 9=1 um<0

Now we use the result (33) that the leading-order angular fluxes are isotropic and Planc
and we find

Z Bé?’R( Z mem) = Z BQO}HL(Z wmIMm|>, j=1,...,N—1

Hum>0 H“m<0

Because we have assumed a symmetric quadrature s@&auins toacT*/2, this result
implies that the leading-order temperature is continuous across cell interfaces:

TR=T%=T%, i=1...N-1 (42)
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It follows that B{” andy/(” are also continuous across interior cell interfaces
0 0) 0 0) 0) i
Bé])R = By} g.j+1.L = Bg j+1/2 VfrgqéJR I/IIEngH—lL = I/fr(ng,j+1/29 j=1...,N-1
(43)
We must also consider Eqg. (41) at the problem boundaries. At the left boundary we hg
0
Z Z wmﬂmFmg = Z Z wm|ﬂm|B§(},iL»

g um>0 9 wum<O

or

2
[T(O)] =acTy . = ZZ Z w0 Fmg, p=2 Z wmpm ~ 1. (44a)

g um>0 nm=>0

We have used the subscript to denote that this is a “Marshak” boundary-conditior
temperature, the discrete-ordinates and multigroup approximation to Eq. (14b). A sin
result holds on the right:

2
[TIEIOI)?] =acTy N1z = ZZ Z |Mm| Gmg- (44b)

9 wum<O

Although these are the leading-order temperatures obtained by the SCB method i
boundary half-cells, we shall see later that thesenate¢he boundary temperatures that
govern the interior SCB solution.

The remainder of the interior analysis is devoted to obtaining expressiof$far terms
of T©. We return to theD (1) equations (38), each of which we divide by a leading-orde
opacity:

(1)

Km 0 0 1 0
(0)7 (wrﬁqé,j+l/2 r(néj) + [Ym — ](gj)R + %) [Ym— ](gj)R =0, (45a)
RAX; /2 OgiR
(1)
) 0) (1) QJL O _
m(lﬂmgj — Ymgj_1/2) T [¥m — BlgjL + (0?_ [¥m — BlgjL = 0. (45b)
gJ gJ

We recognize from Eqg. (33) that the last term in each equation vanishes. We multiply
wmim, SUM overm andg, and rearrange to obtain

G M
©

DD wmitm¥ng iR =~ o Z Z Wit (Vg 4172~ Yimg ). (462)
g=1m=1 ijAXJ/Zg 1 m=1

G M

©) ©

Z Z wm“mwmg LT T 0 Ay /o Z Z Wit (Vg — ¥mgj-1/2)- (46D)
g=1m=1 QJLAXI/ g=1m=1

Upon adding these equations and dividing by two we obtain the desired relation betw
the net currentd® and the leading-order intensities:

(] ] (]
Jj(l) ZZWm 12 (‘”mgwl/z \”mgj + I/fmgu B ‘”mgi—l/2>' (47)

L AX; oL AX;

g=1m=1 OgjR OgjL
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This expression requires some manipulation before it serves our purposes. Let us
consider interior cells, forwhichrr(r?gJJ isthe average o,;‘zrngjﬂ/2 [by Egs. (33) and Eq. (43)].
Then our expression simplifies to

G ] )]
@ _ 2 1ﬁmQ,J+1/2 - ng,j—l/z 1/ 1 1 o
N e B

g=1 m giR  gjL

We define a cell-averaged opacity
1 1/ 1 1
;0 =2 ( 0t 0 ) (48)
gi giR joL

and recall that the leading-order intensities are isotropic and Planckian; then we have

0
Jﬁl)z_ZG:<ZBg<Ti(+)1/2) 2By (T,2 1/2)>’ j=2...,N—1 (49a)

J put 30'(0)AXJ
or
0) 4 0) 4
ac (T, — (T2
3o a ( 1+1/2) ( ] 1/2) , j=2...,N—1 (49b)
3<U( )> AX;

where(o) is an approximate cell-averaged Rosseland mean:

1 =ZG: 1 (By(T{%12) — Bo(T{%0) Z o(T %) — BQ(Tj(E)l/Z)
@) © 10 10 TO :

g=1 (9gj j+1/2 j—1/2 Tiv12 T] ~1/2

(50)

(We have assumed here that the quadrature set correctly integrate<2/3.) This is a
reasonable discretization of the analytic expression (10). Considering this equation
the conservation equation (37), we see thatleading-order discrete solution satisfies
reasonable discretization of the equilibrium diffusion equatairteast in the interior of the
slab after the initial time step.

B. Initial-Layer Analysis

Here we examine the first time stdp=£ 0), for which the analog of Eq. (37) is

AX; 1 & XM
TJ ((ng)) a: Z Z mei,mgj R)

a
Aty

AXii1 4 1 G M
+ 21+ <(TJ’(—?-)1,L) —a:zzwmllfi,mg.pru)]

AXjy1
2

1 [AX;
+_[—]C(O)' (T(O)_Ti,JR)‘Ir C:E)(,))j+1,L(TJ+1L LINFERD)

At [ 2 TPIR

AX;j .
+\]J(il~_)l J](l) = TJQJR+ Qj+1,Lv J :1»'~~1 N-—-1 (51)

If the initial intensity in each half-cell is a Planckian at the initial temperature of the half-ce
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then the double summations in this equation becawi®, and we have Eq. (37) again,
with T©K|,_, = T;. In the more general case we must find an initial temperaluP&|,_o,

in each half-cell, such that Eq. (51) is equivalent to Eq. (37) With 0. It is clear that this
will be true for T ©k|,_, satisfying

G M
ky4 k 1
{a(Tj(ﬂ) ) +Con TN }k—O =c Zzwmwi,mgm +CPWTijn.  H=LorR
- g=1m=1
(52)

Thus, Eq. (52) defines the initial condition for Eq. (37). Equation (52) is a very good
proximation of Eq. (13), which defines tlegactinitial condition:

00 1
a[TOx,0]*+Co0T(x,0) = % / dv / dpi (X, p, v) + Cp() T (X).
0 -1

The only differences between the initial conditions for the discrete and exact equation:
as follows:

e The integrals in the exact condition are replaced by summations in the disc
condition. Thus, the quadrature set and group structure should be chosen such tha
accurately integrate the initial intensity.

e TheC, in the exact condition is an average over the temperature intefy@l (
TO(x, 0)), whereas theC, in the discrete condition is determined by the details of th
time-differencing algorithm. This suggests that for greatest accuracy the time-differen
algorithm should use an avera@g over each time interval (as opposed, for example, 1
usingC, evaluated at the beginning-of-step temperature).

We conclude that the initial condition for the discretized conservation equation (37) is v
accurate in most cases.
C. Boundary-Layer Analysis

The final part of the analysis is to explore what happens at boundaries, where there
be boundary layers that are not resolved by the spatial mesh. We consider first the ¢
the left boundaryj = 1, for which we must simplify Eq. (47). We note that

1
1//;%3/2 - Iﬂr(nog);,l = By (T?f/og) - E(Bg (Tg(/oz)) + By(Tm.1/2))

(Bg (Ts(?z)) — By(Tm.12)) (53a)

NI~ NI

0 0 0 0
Vi1 — Va2 = = (Bg(Ta) + Bg(Tu.y/2) — 2¥u12)- (53b)

Using these identities we rewrite Eq. (47) foe 1.

0 0 .
3O _ by Wit By(T32) — By(Tm,12) N Bg(T3%) + By(Tuw.1/2) — 20, 1
=3 wn |
1 m 209((1))RAX1 ZUg((l):_AX1

g=1m=1

(54)

We require this expression to have the same form as Eq. (49a), the expression for tr
current density in interior cells, for some value'qﬁfg that is yet undefined. That is, we
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require that

i(ZBg (Ta2) - ZBg(Tf?%)>

30’(0) AXq

0
= i i Wil By (T32) — By(Tw, 1/2) By(T32) + Bo(Tw.12) — 2Vmg 2
DI v e 2o |
(55)

We must fdel(/Oz) such that this is true. This will be the boundary condition of the discre

interior solution. We note first that the terms involvi cancel out of the equation [recall
the definition (48)], which leaves

G (0) G M ©
2By (Ty)5) By(Tm.12) By(Tm,1/2) — 2¥mg1/2
> ( 0 =>_ > wm o o . (56)

g=1 g=1m=1 20, glR 2O'glL

To obtain an expression fdr 1(/03 we must perform some algebra:

G (0) G M ©0)
By(Ty)2) 1 1 1 Vmg1/2
Z( © ZZ Wm '“m By(Tm.1/2) +2 o —o|T -0 |
g=1m=1

259 o,
=1 Og1 01R Og1L glL glL
g

G ]f/()%) G G M 3 I)0(0) 12
2 7mg
-3 (B8 =S mtuin)| - ] + 23 mgia
g=1 gl g=1 O‘gl O‘glL g=1m=1 glL
© T{73) — By(T
1/2 9(Tm.1/2) 1
-3 (B0 ) > |4
g=1 %g1 g=1 OgiL

F 3 , By(Tu12)
+ZZwm2m{&g >y moHn— G

9=1 um=>0 glL g=1 um<0 glL

or

G (0)
Bg(T1/2) — Bg(Tm.1/2) — Bg(Tm,1/2)
) < o Z > wms Mm o 6D

g=1 %91 9=1 tm>0 OgiL

We now define an approximate Rosseland mean opacity evaluated at an érnadary-
layertemperature:

1 _ZG: 1 [Bg(Tffz))—Bg(TM.l/z)] Z[Bg Tf?% By(Tw.1/2) | (58)

©) © ©
<‘71/2> g=1 %91 T2 — Twae T1/2 — Tm12

We use this to rewrite Eq. (57):

e ~ By(Tway2)
o LT~ G| = 3 3 e Fro BT

9=1 um>0 glL
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or

F By (T )

0 M.1/2

ac(T)* = s+ (o) 30 3 undu BB, (o
9=1 um>0 g

We define a Planckian-weighted inverse opacity,

G

By(Tm,1/2) 11,
Z © =0 2acTM 172 (60)
g=1 9glL X

which allows us to rewrite the boundary condition:

©0) 0
2T =3 3 un (z_<“1/2>>+3ua< Mﬂpmg. (612)

0 0
g=1 um>0 Op1L glL

A similar result holds at the right boundary,

(V] 2|H/| <Ulslo4)-l/2> 2 < [E]Oj_l/z>
g=1 um<0 p NR gN R
where
1 XG: 1 [BQ(TNH/Z) By(Tw, N+1/2)] Z lBQ (Tl\(lo+1/2) Bg(Twm, N+1/2)]
0) - 0) ,
(onz) o=1 %N Tz = Tunz g=1 T2 — Tmns2
(62a)
G
By (Tm,N+1/2) 11
Z © = "0 EaCTM,N+1/2- (62Db)

g=1 Og,NR OpP,NR

Equations (61) define the boundary conditions satisfied by the leading-order SCB solt
in the interior of the slab. With these definitions, Eq. (49b) now holds foy:all

© 4
j 3<Jj(o>> AX] ’ v
If we insert this into the balance equation (37) and note the continuity result (42), we ob
a reasonable discretization of the equilibrium diffusion equation (12):

a AXj+ AXj117 - © 4 Ok \4
a2 [(Tm/z) (Tj+272) }
)] 0
1 ChirAXj +Cplii1 L AXjya 1O TOK
A_tk 2 j+1/2 = 'j+1/2
ac ac

- ©) 4 0) \4 0 \4 © \4
- 3(0j4+1) AXj41 [(TJ+3/2> (TH')l/z) } + 3(oj) AX; {(TjJr)l/Z) a (Tj_)l/z) }

AXj AX] _
= —'Qjr+ +1QJ+19 L, j=1,...,N—-1 (64)

Here the boundary valuds,» andTn,1/2 are given by Egs. (61). Initial valug@s fork =0
are given by Eq. (52).
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D. Comparison of Boundary Conditions

We now compare the boundary conditions from the SCB and LLD methods against ¢
other and against the variational result obtained by Pomraning. At the left boundary
three conditions are

SCB: aC(Tl(/O%) ’ Z Z Wm {(2 —rsce) + 3ufdg. SCB} Fmg.  (65a)
9=1 um>0

LLD: ac(T{f’g)“(LLD Z > wm[—(z— ru) + 3uhdg, LLD] Fmg. (65b)
9=1 um>0

1
VAR: ac(T')* = /dV/ dlf«[zﬂ(z — I'va) + 3M2qg,var] F(v, u,t), (65¢)
0

where the opacity ratiasandq are

By (T, 2) By(Tm,1/2)
) G Byg(Tm.a2) - tOo_Tt
r <01/2> Zg:l og(Tm,1/2) Zg ' Tl(/z_TM‘l/z
SCB = =
op L dezl Bg(Tw.12) SAE 1,1 Bg(T{/"z) By (Tur1/2)
9=1|2\ og(Tm,1/2) ag(Tgf/[)Z) Tl/Z*TM,l/Z
(66a)
G Bg(Tm.1/2)
o EgzlfMTﬂy 56 | Bo(Ti) By
(o12) 110 T T T
lip = = ’
op.1 > o1 Bo(Tw1/2) 3¢ 1 Bg(Tl(?z)) By (Tw.1/2)
g=1 (TM.1/2+T3‘%) Tl/z—TM,l/Z
O'g I —
(66b)
B(v, TS . ex
aB(v,T,
GR<07 TI\?IX) f(r(v Tex) dv f (V M) dv
Fvar = ex (66C)
o+(0T8) B0 TG |5ty
<0—(0)> 0g(Tw,1/2) Zg:l[ T TM»l/Z
Quscp = V2 iz (67a)
) ogl 6 (11, 1 By (T /z) By(Tua) |
9=1|2\ og(Tm.1/2) ag(Tng; Tl/z*TMAl/Z
Bg(Tl/z) Bg(Tm.1/2)
ﬁzg T 19 7.,
< ©) . ( M1/2+ 3/2) Ti2=Tma2
_ \%1p2/up _ °°
Qg.LD = ©) By (T,%) By (T (670)
agl ZG 1 g /2 g (Tm,1/2)
g=1 ( TMA1/2+T3(/; ) Tl/z_TM-l/2
Ug T
00 dB(v )
dv
Ghar(v) = O’R(O, T,S,X) _ a(OUTex) f (67¢)
var 0'(0, v, TISIX) f aB(u Tex) dv
0 a(O,v,TﬁX) aT
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(Equation (65b) is equivalent to the result obtained by Metedl. [7]; we have simply
manipulated it into a different form.) The three results in Egs. (65) obviously have the s:
form, which is remarkable in itself. In words, Eqgs. (65) translate to the following:

The boundary condition for the energy density is an integral over all frequen-
cies and incident directions of a weight function times the incident intensity, and
the weight function is the sum of two terms. The first term is a (temperature-
dependent) constant timgs; the second is a temperature- and frequency-
dependent function timgs?.

We begin our comparison by considering the very simple case of a Planckian incic
intensity:

F(v, n) = B(v, To) and Fmg = Bg(To).

Then we havd)y, = Ty, and Eqs. (65) produce

G
(04 2u
aC(Tl/z) ’scs = gz=;L ,Lz;o Wm {7(2 — rsce) + 312 dg.sca| By(To)

G

= Z[(Z — I'sce) + g,scel Bg(To) (68a)
g=1

1
=(2—rsce+ rSCB)EaC(To)4 = ac(To)*,

G
ac(Ti%)"| . =D [2—ruo) +GguiolBy(To) = -+ =ac(To)*,  (68b)
g=1
ac(-l—var)4 = /dV[(Z — Fvar) + QQ,var] Bv, To) =---= aC(TO)4' (680)

(Here we have used the fact that the Planck-averggge@quals x for X = SCB, LLD, and
variational.) Thus, given a Planckian incident intensity, the leading-order interior solut
produced by the discrete methods satisfies the correct Marshak boundary condition. T
as we would hope and expect.

In general, the most obvious difference between the discrete and variational resu
that the discrete results replace integrals with summations. This suggests two condi
for accuracy:

(i) The quadrature set should accurately approximate two half-range integrals-
times the incident intensity and times the incident intensity—in each frequency group

(i) The group structure and group-averaged opacities should be chosen such the
group sum ofF,g/0y is an accurate approximation of the frequency integrat of .

If we assume that the quadrature set and group structure meet these requirements, th
differences among the three boundary conditions are due to differences in their definitio
the two opacity ratios andq, defined in Egs. (65) and (66). To help gain an understandil
of these differences we shall assume for the moment that the multigroup and quadr
sums can be replaced by the integrals they approximate, and we shall consider a s
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model opacity [12]:

1— exp(—hv/KT)
(hv)3

o, T) =09 (69)
This model opacity has two key characteristics of real opacities: it is much larger
hv « KT than forhv > kT, and for a giverhv it decreases ab increases.

Given our model opacity we can explicitly evaluagg;,

(hv/KTu)3
01— exp(—hv/KTy)’

Quar(v) = ¢ (70)

whereqp is a constant whose numerical value is approximately 0.005. The most impor
feature ofqy, is that it is vanishingly small fohv « kTy, and very large fohv > kTy.
The same holds fagscg andq.p . As a result, if the incident intensitly is concentrated at
frequencies such thathv « kTy, then the term containing in the boundary condition
is negligible, and

1
aC(Tvar)4_) (2= rvar) /dv/ du2uF (v, u, t),
0

(Tvar)4 2 - rvar

71
Tw* 2 D
Given the model opacity we can explicitly evaluajg,
4  2¢(6
- ¢© L os7, (72)

TI®

where¢ is the Reimann zeta function(n) = >~ k™.

Thus, given incident intensities concentrated at low frequencies, the boundary cond
satisfied by the leading-order solution is lower than the Marshak boundary condition,
the ratio of the two does not depend on temperature or any details of the incident ir
sity F:

(Tven? 2—tvar _ 30(6)+7¢(D)
— = ~ 0.71
(Tm)# low-v incidence 2 70 (6) + 7¢(7)

(73)

(This is the case, at least, if Pomraning’s variational result is a good approximatior
reality.) Similar conclusions hold for the discrete methods,
04 04
(Tl(/Z)) N 2—rscB (Tl(/%) 2—Trup
4 ’ 4 ,
(MT)? |oeq 2 M 2

(74a,b)

although the ratiosscg andr p are not constants, but dependhmandTl(/oz). For example,

given the model opacity, we can calculate

1+a+a®+a® ©
l'sce = , =T,5/Tm. 75
BT 1t a+a?+ad+at+ad+ab @ = Tuz/Tu (75)
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(We have been unable to evaluatg, analytically, even given our model opacity.) There i
only one real positive that satisfies both Eqgs. (74a) and (75); we have found it numerical

(0))4
4 (Tl/Z)
T (Tw)? low-v incidence
(M)* |ocq

~0.67. (76)

This differs from the variational result, 0.71, by only 6%. Like the variational result, t
SCB result is independent of temperature and details of the incident intensity.

While we were unable to analytically compuitep, we did evaluate it numerically and
found that it is very close to the SCB result—closer, in fact, than either result is to
variational result. Thus, we conclude the following.

(i) Pomraning’s variational result implies that, given our model opacity, if the incide
intensity at a boundary is concentrated at low frequencies (suchithat kTy), then the
boundary condition satisfied by the leading-order interior energy density is approxima
71% of the Marshak value.

(ii) A similar result holds for SCB; the value is approximately 67%. (This assum
that the quadrature set accurately integratEver incident directions and that frequency-
group sums are accurate approximations of frequency integrals.)

(i) A similar result holds for LLD; the value is very close to that of SCB.

(iv) The above are true regardless of temperature, angular distribution of the incic
intensity, or frequency distribution of the incident intensity, provided only that the incide
frequencies are low enough.

(v) We do not know from our analyses how accurate Pomraning’s variational estin
is. Numerical testing with very fine meshes is our only means of assessing this.

Our first series of test problems in the numerical-results section is designed to test t
theoretical predictions, which, we remind the reader, hold only for incident intensities t
are concentrated at low frequencies.

We turn next to incident intensities concentrated at intermediate frequencies such
the values ofyy are order 1. In such problems the directional distribution of the incide
intensity plays a significant role in determining the boundary condition satisfied by
interior solution, because bothaweighted integral and a?-weighted integral of the
incident intensity are important. Obviously, in these problems the SCB boundary condi
will be very close to Pomraning’s variational approximation to the exact conditigyz gf
is close tor,,r and(gscg is close togys. Returning to our model opacity, and continuing
to assume that the discrete sums are excellent approximations to the integrals, we
analytically compute a simple relationship betweesndr in the variational and the SCB
boundary conditions:

_ 4] (hv/kTu)?
Qvar(v) = rvar|:120§(6) 1= exp(—hv/ kTM)}’ (77a)
_ 74 (hv/kTw)® _ Tscs
Osca(v) = rSCB[12O§(6) 1 exp(—hv/kTM)} = EQvar(V)- (77b)

We are unable to compute a similar analytic relationship betwgenandr p; however,
we have observed numerically that p is usually much closer tgscg than either is to
Ovar- Given this and Eq. (77b), the difference between the numerical methods’ bounc
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condition and the variational condition boils down to the difference betwagrandr,,.
Analytic expressions for these ratios (given the model opacity) are shown in Egs. (72)
(75). The variational value is0.57; the SCB value depends on the ratio of the boundar
condition temperature to the Marshak temperature. If that ratio were smalkd&gcould
approach unity, which is significantly different framy,. But how small can that ratio get?
Note that

ot = <T1(/O%> Jo dv fo d [214(2 — rsce) + 312dg,sce] F (1., v)
Tu Joedv [y duf4ulF (1, v)

fo dv fo du[214(2 — rsc)]F (1, V) 2—rsca
fo dv fo du[4u]F(u, v) 2

(Here we continue to assume for simplicity that the discrete angle and frequency s
are roughly equal to the integrals they approximate.) Thus, the temperature ratio mu
greater than that which satisfies®= 2 — rscg. We found above that the* satisfying this
equation is~0.67, which corresponds tgcg~ 0.66. This shows that the factogcg/rvar
appearing in Eqg. (77b) can never be larger thah66/0.57~ 1.16 and that this limiting
value is attained only if theg term it multiplies is unimportant! We conclude théthe
boundary-condition temperature is lower than the Marshak temperature the SCB boun
condition will be very close to the variational estimate obtained by Pomraning

If, on the other hand, the boundary-condition temperature is higher than the Mars
temperature, i.e., i& > 1, thenrscg could be significantly smaller than,,, which could
potentially lead to significant error in tligterm in the boundary condition. Let us examine
how largex can be:

(78)

i ( T ) Jo© dv fo dpa[20(2 = rsce) + 3u2dsca(v)] F (i, v)
Tm Jo dv fo du[4u]F (e, v)
21508, Jo dv Jo die [3?(rsca/Tvad) Gvar()] F (14, 1)
2 Jo2dv [y duf4ulF (i, v)

2—rscs  3rscs

<—F—t+ 5 sup  {uGvar(v)}
2 4 lvar ,v such that
F is important

3 1
14r su - =
+ I'sce 4.057 e FDIS {1 Qvar(V)}

important

A

1 1
<1+ o3 132 sup {nQuar(v)} — . (79)

w,v:F is
important

(Here we used the fact thascg > 1/ for finite positivea.) Clearly,a can become large
only if qvar(v) becomes large. But our assumption at the moment isgtigadrder 1, which
means thatr cannot be much greater than unityaliis not much greater than unity, then
rscgWill be close tary,, and thereforgscg will be close tag,sr. We conclude that if incident
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intensities are concentrated at intermediate frequencies suchisr@bse to unity, the SCB
solution will satisfy boundary conditions that are quite close to the variational estimat
the exact conditions.

Finally, we consider incident intensities concentrated at high frequencies such
hv > kTy. Itis clear from Egs. (67c) and (70) that at these frequergjgcan become
very large, causing the,@ term to dominate the 2 term in Eq. (65c). This can lead to
boundary-condition temperatures much larger than the Marshak temperature. Furthe
shown in Eqg. (79), a large value gfalso leads to a large and thus to amscg/rvar ratio
that is small, and hence to an SCB boundary condition that is significantly lower than
variational estimate. This effect would be maximized for normally incident intensities &
minimized for grazing-angle incident intensities. However, this resultis somewhat misle
ing, because it comes from an asymptotic analysis that assumes the problem is opt
thick at every frequencyn reality, problems tend to be optically thin, or at least not ver
thick, at frequencies such that > kTy. Thus, one must ask whether the analyses pr
sented thus far have any bearing on problems with incident intensities at high frequen
We address this question in Section V.

In summary, the boundary condition satisfied by the leading-order SCB solution is
markably close to Pomraning’s variational approximation of the exact boundary condit
Our studies using model opacities indicate that differences between the SCB and variat
boundary conditions will usually be a few percent. Differences between boundary co
tions satisfied by the SCB method (which uses half-cell opacities) and the LLD metl
(which uses opacities at cell-average temperatures) will usually be smaller. An excey
could be cases in which the incident intensity is concentrated at frequénciek Ty ; for
such problems the asymptotic analysis predicts that the SCB solution will satisfy a bot
ary condition that is smaller than that of the variational estimate. However, the asympit
analysis is suspect in such problems. This is discussed further in Section V and te
numerically in Section VI.

One uncertainty in this analysis is the accuracy of the variational result to which we
comparing the discrete results. We can get some feel for this by studying one-group ste
state problems, for which the exact boundary condition can be obtained and comg
against the variational result. In such problems the variational result can be in error b
much as 10% given an intensity incident at a grazing angle, but is within a few perc
for most incident distributions. In the more realistic (energy-dependent, transient) ¢
the variational result cannot be any better than this and is probably worse. We can fu
explore this question by numerical experiment, and we do so in Section VI.

E. Summary

To summarize, our analysis predicts that the multigroup discrete-ordinates SCB me
performs remarkably well on optically thick slabs (optically thick in every frequency grot
strictly speaking) even when boundary layers are not resolved by the spatial grid and ir
layers are not resolved by time steps. The leading-order solution has the correct angule
energy distributions, as we see by comparing Egs. (33) and (8). In the interior of the
the leading-order SCB temperature satisfies a reasonable and robust discretization (&
the equilibrium diffusion equation (12) that the exact leading-order temperature solu
satisfies. This solution satisfies an initial condition (52) that agrees closely with the e:
condition (13), and boundary conditions (65a) that agree reasonably well with a variati
estimate (65c¢) of the exact boundary conditions, at least in most cases.
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V. PROBLEMS THAT ARE BOTH “THICK” AND “THIN”

In the preceding section we discussed an asymptotic analysis that assumed ths
problem in question was optically thick for every frequency of interest. Here we consi
the more realistic case in which the problem is not thick in the higher-frequency grot
but is thick in the others.

Consider an intensity incident on the left face of a gtak- 0) that is not optically thick
(less than or equal to a few mean-free paths) at the incident frequencies. We can decor
this problem into two simpler problems: one for the “uncollided” intensity and one for t
“emitted” intensity. The uncollided intensity is

lun(X, v, ) = F(v, n) exp{—/ o, T(X)) dx’/u}, (80)
0

which leads to the direct energy deposition:

00 1
Q) = / dvo (v, T(X)) / ditlun(X, v, 40). (81)
0 0

The problem for the emitted intensity has no incident photons (i.e., vacuum boundarie
is driven by the volumetric energy source givenin Eg. (81). The asymptotic analysis is lil
to apply to this problem, which means that the emitted intensity is likely to be Planck
(to leading order) at a material temperature that satisfies the equilibrium diffusion eque
(12). In fact, we contend that the analyd@esapply if the emitted intensity is concentrated
mostly in frequencies for which the slab is optically very thick. Thus, we contend tl
if an incident intensity is concentrated at high frequencies, the leading-order solutio
the sum of an uncollided component and a diffusive component. (Again, this assumes
the emitted intensity is concentrated in frequencies for which the slab is optically thic
The uncollided component is given by Eg. (80) and the diffusive component by Eq. (.
with the sourceQ given by Eq. (81). This implies that the SCB and LLD methods wi
perform well on such problems, provided the cells are thin enough that SCB and L
get the attenuation in Eq. (80) approximately right. This result is likely of more practi
significance than the pure asymptotic-theory results, which required the assumption
the problem is optically thick for all frequencies of interest.

In the next section we will test these predictions using problems with high-frequel
incident intensities.

VI. NUMERICAL RESULTS

In previous sections we made a variety of predictions about the behavior of discret
transport solutions in optically thick radiative-transfer problems. In this section we dem
strate this behavior by running a variety of test problems. We find that in every problem
meets the assumptions of the analysis, the numerical solution behaves as predicted. |
ticular, we find that the fully implicit multigroup discrete-ordinates SCB (FI/MG/DO/SCE
method is remarkably accurate, even given coarse spatial meshes that do not resolve t
ary layers or wave fronts.

A brief discussion of our solution technique is in order. We used a fully implic
time discretization with the exception that opacities and specific heats were evaluats



388 ADAMS AND NOWAK

beginning-of-step temperatures. To obtain animplicit Planckian we used a Newton—Rap
iteration based on

B(Tirs) ~ BT + (Ts — Toog|

oT |5,

This leads to a linear steady-state multigroup transport problem to be solved (or apr
imately solved) for each Newton—Raphson iteration in each time step. We approxime
solved each such problem by performing a single iteration using a one-group equatic
accelerate the multifrequency iterations. Our overall iteration strategy for a given time .
is as follows:

(i) Define T, as the temperature at beginning of time step. Make a reasonable g
for Ty.

(i) ComputeBg = Bg(Tk—1) + (Tk — Tk—1)[d Bg/9T]k—1 in each half-cell and group.

(iif) With known By, solve for the intensity in each direction, half-cell, and group.

(iv) Compute an integrated-intensity residual.

(v) Solve a one-group problem for an additive correction to the integrated inten:
[13]. (This problem requires iteration; we accelerate it using a transport-synthetic acc
ation method [14].) Use new integrated intensity to get new matter temper&ture,

(vi) If Txyq is close enough tdx and the integrated intensity is close enough to it
previous value, this ends the time step. Otherwise increknantl return to step (ii).

In the following subsections we present numerical and theoretical results from a variet
problems. This allows us to check many different aspects of the predictions of our the
and in the end to draw conclusions about the accuracy of the discretization schem
employ. We shall begin in subsection A with several problems that employ our “moc
opacity and thus test the detailed quantitative theoretical predictions that we made
such opacities. Subsection B is devoted to test problems with real-world opacities,
which we study boundary-layer effects using 15 different incident distributions. The fi
subsection considers a time-dependent problem with a wave front, examining the acct
of a coarse-mesh solution as a function of time and position.

To judge the accuracy of the coarse-mesh solution, we compare its material temper
and radiation energy density against fine-mesh and/or theoretical results. We defini
radiation energy density as

00 1
Er(X, 1) = aTA(x, 1) = %/ dv/ duw (X, i, v, t).
0 -1

Here we have also defined the “radiation temperat(fg) which is another convenient
guantity to compare. When thermal equilibrium is reached and the radiation field is |
Planckian distribution, the radiation and material temperatures are equal.

A. Steady-State Problems Using Model Opacities

In Section IV.D, we made several sharp quantitative predictions under the assumptic
the “model” opacity of Eq. (69). To test those predictions we consider a 1-cm slab with
constanisy chosen such that the slab is quite optically thick in the low-frequency grot
but only a few mean-free paths thick in the high-frequency groups. We generate multig
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TABLE |
16-Group Opacities, Evaluated akT = 0.1 keV

NVhigh Model opacity SiQ opacity
Group (keV) (cnt) (cm™)
1 1.7780e-2 9.1353e-7 6.2081&-5
2 3.1610e-2 2.2486&-7 5.5395¢-5
3 5.6210e-2 5.9398¢-6 4.9732e-5
4 1.0000e-1 1.4205e-6 4.1049¢e-5
5 1.7780e-1 3.0853¢-5 2.9181e-5
6 3.1610e-1 6.5712¢-4 1.5912¢-5
7 5.6210e-1 1.5458e-4 5.4127¢-4
8 1.0000e-0 3.8265e-3 3.1412e-4
9 1.7780e-0 8.2908¢-2 2.4673e-4
10 3.1610e-0 1.61666-2 1.2242¢-4
11 5.6210e-0 3.0088e-1 2.2580e-3
12 1.0000e-1 5.4764¢-0 3.9908¢-2
13 1.7780e-1 9.8477e-1 6.7010e-1
14 3.1610e-1 1.7639e-1 1.0726e-1
15 5.6210e-1 3.1510e-2 2.8111e-0
16 1.0000&-2 5.6156e-3 2.5945e-1

Note.Group 1 starts at 0.01 keV.

cross sections by taking Rosseland averages of the model opacity over each group. W
consider three sets of test problems with non-Planckian incident frequency distribut
that test three regimes of interest. In the first two sets of problems we employ 16 frequ
groups, the cross sections for which are shown in Table kfo= 0.1. In the first set of
problems the incident energy is in the lowest-frequency group (1). In the second, the er
is in an intermediate group (6) such tmat/ k Ty is order 1. In the third set of test problems
we employ 12 frequency groups, and the energy is incident in the highest group, for w
hv/kTy > 1 and the opacity is too small to satisfy the assumptions of the diffusion-lir
analysis. In each case the incident intensity impinges on the left face of the slab, while
right face is reflecting.

A.1l. Incidentintensity in lowest-frequency groujpf the incident intensity at a boundary
is concentrated at low frequencies (such that< kTy,), then (given the model opacity) our
theory predicts that the boundary condition satisfied by the leading-order interior en
density for SCB would be 67% of the Marshak value if there were no angular or freque
discretization. Given the 16 frequency groups of Table | andSeguadrature set, the
prediction changes from 67% to approximately 64.5%. This result is predicted to be
dependent of the angular and frequency distribution of the incident intensity. Here we
these theoretical predictions.

We examine the coarse-mesh interior solution given incident intensities in group one
whichhv « kTy) for three different angular distributions: normally incident, grazing-ang
incident, and isotropic. In each case the incident intensity is normalized such that energy
rate into the problem is equal to the flow rate from a Planckian incident intensity at a t
perature of 0.1 keV—only thdistributionof the incident energy is different. Thus, in eact
case the “Marshak” boundary-condition temperature is 0.1 keV. The theory predicts, t
that each problem will attain a boundary-condition temperatur@ @454 x 0.1 keV,
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TABLE Il
Material Temperatures from Problems with Model Opacity

Incident Angular T, interior T, interior
spectrum distribution (predicted) (calculated)
Group 1 Isotropic 0.0896 0.0899
Grazing 0.0896 0.0899
Normal 0.0896 0.0899
Group 6 Isotropic 0.0914 0.0919
Grazing 0.0898 0.0902
Normal 0.0923 0.0929

or 0.0896 keV. Our coarse-mesh numerical results are presented in the first three ro
Table Il. The value attained, 0.0899, is in excellent agreement with the asymptotic predic
of 0.0896, which we note is only the leading-order term in an asymptotic expansion of
solution. As the theory predicts, the value attained is completely independent of the ang
distribution of the incident intensity. We remark that we obtained the same results w
we direct the same energy flow rate into other low-frequency groups suchitkak Ty,

is satisfied. That is, our numerical experiments confirm the theoretical prediction tha
long as the incident photons hakie « k Ty, the interior solution does not depend on the
angular or frequency distribution of those photons, but only on the total energy flow r
Our results also confirm the theoretical prediction that in this case the correct energy de
is approximately 35% lower than the solution one would obtain from diffusion theory w
aMarshakboundary condition.

Table Il shows excellent agreement between numerical results and theoretical predict
butitdoes notaddress the accuracy of the numerical solution. The accuracy in these prol
was comparable to that in similar problems with real opacities, which are shown late
approximately 7% error for the grazing cases and% for the others. Also, this table
does not address the interesting theoretical prediction that the coarse-mesh solution
boundary half-cell will be inaccurate, taking on the “Marshak” value, even though 1
remainder of the solution is accurate. In all cases our numerical results do exhibit
behavior, and we give examples later in the subsection on problems with real opacitie

A.2. Incident intensity in group 6.If the incident intensity at a boundary is concentrate
at intermediate frequencies (such that~ kTy), then (given the 16-group model opacity)
our theory predicts that the boundary condition satisfied by the leading-order interior en
density for SCB would be 64.5% of the Marshak vgiligsan additional term that depends
on the frequency and angular distribution of the incident intensity. [The additional tern
the one withgscg in Eq. (65a).]

Here we examine the coarse-mesh interior solution given incident intensities in grot
(for whichhv =~ kTy) for three different angular distributions: normally incident, grazing
angle incident, and isotropic. In each case the incident intensity is normalized such
energy flow rate into the problem is equal to the flow rate from a Planckian incident inten
at a temperature of 0.1 keV, which means the “Marshak” boundary-condition tempera
is 0.1 keV. Our theoretical predictions [from the discrete version of Eq. (65a)] and
coarse-mesh numerical results are presented in the second three rows of Table I
differences between numerical and predicted results are approximately 0.5%, whic
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excellent, especially considering that the predictions are for the leading-order term i
asymptotic expansion. Note that with the energy coming in at higher frequencies than i
previous problems, we now see a dependence on the angular distribution of the phc
This dependence is smaller for group 5 and larger for group 7, etc., begggsacreases
with frequency and thus plays an increasing role. See Eqg. (65a).

A.3. Incident intensity in highest grouplf the incident intensity at a boundary is con-
centrated at high frequencies (such thats> kTy), then the asymptotic theory alone is
invalid, because significant radiant energy is contained in groups for which the proble
not extremely optically thick. In this case we turn to our theory of Section V, in which v
view the radiation energy density as the sum of an uncollided component and an “emi
component. Provided that the matter temperature does not become extremely high, th
majority of the emitted photons will be in frequency groups for which the problem is of
cally thick. Thus, in this case the asymptotic analysis holds for the emitted component
can analytically estimate the uncollided component, provided we can obtain a reasot
estimate of the opacities as a function of position in the uncollided photons’ freque
groups. (This opacity depends on temperature, of course, which depends on the er
component.)

In the Appendix we describe our analytic estimate of the solution of a problem in wh
the incident intensity is in a single direction in a single “thin” frequency group and t
opacity is the “model” opacity of Eq. (69). In Fig. 2a we display results from such
problem in which the incident direction was the most normally-incident angle irsihe
quadrature set and the incident group was the 12th of 12. The figure compares the rad
energy densities from a coarse-mesh SCB calculation, a fine-mesh SCB calculation, ar

0.008 T T T T
0.006 T
i
T 0004 .
=
. Coarse Mesh
0.002 [ — Fine Mesh T
""" Theoretical (total)
~— Theoretical (uncollided) x100
0,0% i L " 1 L L n i L .
0.0 0.2 0.4 0.6 0.8 1.0

Position (cm)

FIG.2a. Theoretical, fine-mesh, and coarse-mesh results: normal incident in group 12 of 12. (The theore
(total) curve is almost coincident with the fine-mesh curve.)
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FIG. 2b. Fine-mesh and coarse-mesh results: grazing incident in group 12 of 12.

analytical estimate. The coarse-mesh solution is plotted usilh@veragedsalues plotted
at cell midpoints Agreement among the analytic, fine-mesh, and coarse-mesh solutior
clearly quite good. In Fig. 2b we present results from a similar problem, the difference be
that the incident intensity is in the most grazing direction instead of the most normal. Ac
there is very good agreement between our theoretical prediction, a fine-mesh calcule
and a coarse-mesh calculation.

The agreement of our analytic estimates with the fine-mesh calculations in these prob
strongly suggests that the theory developed in Section V is correct. The agreement
the coarse-mesh results supports the overall conclusion of this paper, based on both t
and numerical tests, that the FI/MG/DO/SCB discretization is a very robust method
radiative transfer calculations.

B. Steady-State Problems with Real Opacities

In the preceding section we considered several problems using an opacity that we
analytic function of frequency and temperature. This allowed us to make detailed quar
tive comparisons between our theoretical predictions and numerical results. In this se
we consider a series of test problems in which the opacities are “real” in the sense that
are approximately those of SiOwith a density chosen such that a 1-cm slab is optical
very thick. Each problem was run in time-dependent mode until steady state was reas
Each problem employed &g Gauss—Legendre quadrature set, used the 16-group opaci
described in Table | (which shows themkdt = 0.1 keV), and was subjected to a specifiec
incident intensity on the left boundary and a reflecting condition on the right. The ene
flow rate into each problem was equal to that from a Planckian incident intensity at a t
peraturek T = 0.1 keV. The only difference among the various problems was the frequel
and direction distribution of the incident photons. (The “dilute Planckian” problems we
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TABLE IlI
Comparison of Coarse-Mesh Radiation Energy Densities (J/c#) to Fine-Mesh Reference
Solutions and “Marshak” Boundary Conditions, for Various Incident Distributions (Real
Opacities)

Incident distribution Energy density, surface Energy density, interior
Marshak

Frequency Direction Reference Coarse % error  Reference Coarse % error en.d

Planckian  Isotropic  1.372€3 1.372e-3 0.0 1.372¢-3 1.372e-3 0.0 1.372e-3
Grazing  4.455¢3 1.372e-3 69.2 7.848¢2 8.413e&-2 7.2 1.372¢-3
Normal 1.005¢-3 1.372e-3 36.5 1.683¢3 1.663e-3 1.2 1.372a-3

Group 1 Isotropic  1.407e3 1.372e-3 25 1.074e-3 1.091e-3 1.6 1.372a-3
Grazing  4.485¢3 1.372e-3 69.4 7.479¢2 7.978e-2 6.7 1.372e-3
Normal  1.036e-3 1.372¢-3 324 1.257¢3 1.258e-3 0.04 1.372¢3

Group 6 Isotropic  1.384e3  1.372e-3 0.87 1.226¢3 1.233e-3 0.7 1.372e-3
Grazing 4.471¢3 1.372¢-3 69.3 7.632¢2 8.196e-2 7.4 1.372e3
Normal 1.015¢-3 1.372e-3 35.1 1.476¢3 1.464e-3 0.8 1.372a-3

Group 16  Isotropic  1.236€3 1.306&-3 5.7 8.292¢-5 8.559¢-5 3.2 1.372a-3
Grazing  4.267¢3 4.365e-3 2.3 1.088¢-6 1.112e-6 2.3 1.372¢-3
Normal  7.776¢-2 8.275e-2 6.4 6.754¢-5 7.011le-5 3.8 1.372e-3

Dilute Isotropic  8.401¢1 8.575e-1 21 1.129¢-2 1.109e-2 2.4 8.575e-1
Planckian Grazing  2.755¢€ 8.575e-1 68.9 5.386¢1 5.776e-1 7.2 8.575e-1
Normal  6.147¢-1 8.575e-1 39.5 1.425¢2 1.387e-2 2.7 8.575e-1

exceptions: their energy flow rates wergl the rates of the other problems.) For eac
problem, we obtained a reference solution using a 200-cell logarithmically spaced grid
resolved any boundary layers arising at the left boundary. The coarse-mesh SCB solt
were obtained using 10 equally spaced cells.

We consider five different frequency distributions, and for each of these we cons
three different directional distributions, for a total of 15 different test problems. We su
marize our results in Table Il, which gives reference solutions, coarse-mesh solutions
relative error between them, for two different spatial locations in each of the 15 proble
The “surface” quantity requires some explanation; in the reference case it is from the
closest to the incident surface, which is essentially the surface quantity. In the coarse-|
case, however, itis simply the left half-cell value from the first cell, which is the coarse-m
version of a surface quantity. It is interesting to note that in all cases except the grou
incident ones, this coarse-mesh surface solution is the Marshak boundary-condition v
This is exactly as predicted by the theory; see, for example, Egs. (44). However, althougl
Marshak value is in considerable error relative to the reference surface value and rel
to the reference interior value, this error does not propagate to the interior. For exan
in the group-1 grazing case, this value is a factor of three lower than the reference su
energy density and a factor of almost two higher than the reference interior solution,
the interior coarse-mesh solution errs by only 7%. Again, this is exactly what the the
predicts. To further illustrate the behavior of both the reference and coarse-mesh solu
in the presence of boundary layers, we later present plots of energy densities versus pc
for some of the more interesting cases.

We begin our discussion with the Planckian/isotropic incident intensity. The solutior
this problem is that the intensity everywhere is a Planckian at 0.1 keV. Both the fine-
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FIG. 3. Planckian/grazing-angle incident intensity, steady-state solution.

coarse-mesh solutions are exactly correctin this problem; itis essentially an infinite-mec
problem and thus not a challenge to most spatial discretizations

The Planckian/grazing solution contains a boundary layer, as shown in Fig. 3. (Note
logarithmic spatial scale, which stretches the boundary layer out across most of the
The interior solution in this problem is lower than that of the Planckian/isotropic solutic
as predicted by the theory. This is easy to understand on physical grounds: more
incident photons are now absorbed near the surface, which produces a higher tempe
there, which causes a high rate of emission very close to the surface. Thus, more el
escapes this problem than the previous one. We see from the figure that the coarse mes
not resolve the boundary layer at all, and thus cannot track the solution within that la
Nevertheless, we see from the figure that the coarse-mesh solution is quite accurate
interior of the problem. Turning to Table I, we see the numbers: the coarse-mesh solL
atthe surface is 69% low relative to the fine-mesh surface solution; in the interior, the coe
mesh solution errs by only 7%. (We remark that a one-group steady-state linear prol
with a grazing-angle incident intensity would yield approximately the same error, wh
in that simpler setting can be shown to stem from the difference between the variatic
estimate and exact boundary conditions [3-5]. We believe that this is the source of
error here as well—that it is not caused by the nonlinearity, time dependence, or frequ
dependence of the problem.)

The Planckian/normal solution also contains a boundary layer, as shown in Fig. £
this case, radiation penetrates deeper into the slab (on average) than in the isotropic
before being absorbed. This leads to lower emission losses from the surface and thus't
interior energy densities. We find again that the interior coarse-mesh solution is remark
accurate—1.2% error—despite completely missing the boundary layer and missing
surface solution by 36%. If we explore why the normally incident coarse-mesh solu
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FIG. 4. Planckian/normal incident intensity, steady-state solution.

is more accurate than the grazing-incident, we eventually conclude that it is becaus
variational estimate is closer to the truth wheiis close to 1 than it is when is close to
zero, not because the SCB boundary condition is closer to the variational condition.

We next consider an incident frequency distribution such that all photons appear ir
lowest frequency group, group 1. In these problems, boundary layers develop at the
surface of the slab regardless of the incident directional distribution. The steepest bour
layer is in the grazing-angle problem, which minimizes the average distance from
boundary at which photons are absorbed and re-emitted, thus maximizing emission
the left surface (and the surface temperature) and minimizing the interior energy der
This is shown in Fig. 5. Returning to Table IlI, we find that the numbers are along the li
of the previous problems: the first coarse cell has temperatures and energy densitie
are significantly lower than the correct surface quantities, but these errors do not prop:
into the interior.

Continuing with the incident intensity in group 1, we next consider an incident direct
that is almost normal to the surface (the direction in 8xeset whose cosine is closest tc
unity). Results from this problem are shown in Fig. 6. Note the nonmonotonic bounc
layer that develops, and note that it begins and ends in the first one-thousandth ©
first coarse cell, which means that the coarse mesh is ridiculously far from resolvin
Nevertheless, as predicted by theory, the coarse-mesh solution is extremely accurate
interior. Again, of course, the coarse solution has significant error in the cell closest tc
boundary, but this does not propagate into the interior.

We also considered an isotropic intensity incident in group 1. As one might expect,
solutions and errors were between those of the grazing and normally incident probls
In the boundary cell, where the coarse-mesh normally incident solution was too high
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FIG.5. Grazing-angle incident intensity into group 1, steady-state solution.
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the grazing-incident solution too low, the isotropic-incident coarse-mesh solution has:
little error. See Table III.

The next set of test problems has incident photons only in group 6. Coarse-mesh €
follow the same basic trends as in the group-1 problems, as shown in Table lll. Inte
solutions are generally higher in these problems than in the group-1 problems, becau:
incident photons penetrate farther on average before being absorbed, and thus fewer e
photons are lost through the surface. Comparing the coarse-mesh and reference soll
we again see that the coarse-mesh solutions have considerable error in the first cell b
remarkably accurate in the interior, as predicted by the theory.

Finally, we consider the case in which the incident intensity is concentrated at F
frequencies. Here we do not expect the asymptotic theory to be correct, for the proble
not optically thick to high-frequency photons. However, as discussed previously, we ex
the leading-order solution to be the sum of an uncollided component and an “emit
component, with the asymptotic theory applying to the “emitted” component if the emit
intensities see the slab as very thick. Furthermore, the uncollided solution should be
represented by a coarse grid if the cell size is sufficiently fine (in high-frequency mfps
represent the attenuation of the incident intensity.

Given that the incident intensity is deposited in the highest-frequency group (gr
16), our numerical results indicate that the coarse grid solution is extremely accurate i
interior of the slab. Referring to Table I, the errors in the radiation energy density 4%
for the three angular distributions and the errors in the material temperaturelése

In Fig. 7 we examine the grazing-angle incident case which shows that the interior t
perature is much larger thay (which is 0.1 keV), indicating a very important uncollidec
component. The coarse mesh zone width, whick@4 mfps in group 16, accurately

06 b By B | et B i BN bbs B bk | i
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FIG. 7. Grazing-angle incident intensity into group 16, steady-state solution.
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resolves this uncollided component and thus obtains an accurate source of emitted phe
As detailed in our “thick/thin” theory, this is all that is needed for the method to obtain
accurate coarse-mesh solution.

In practical applications it is sometimes the case that the source of radiation is s
distance from the target of interest such that the target sees a “dilute” Planckian frequ
spectrum. In our final set of steady-state problems we let the incident intensity equ
constant (116) multiplied byB(v, Ty), with To=0.1 keV. The errors we see in Table |
for this dilute Planckian incident spectrum are comparable to those in previous cases.

D. Transient Problems

Finally, we show a transient problem to illustrate that the FI/MG/DO/SCB method
accurate even when the mesh does not resolve wavefronts. We compare the time evolu
the solution for the case of a monoenergetic source incident on a 1-cm slab. For this tran
problem, the specified incident flux is on the left boundary and a vacuum is on the r
boundary. The radiation transport is modeled with the SCB spatial discretization, 12 en
groups (again using the Sj@pacities), and aisg quadrature set. The reference solutiol
is obtained by resolving the boundary layers [at both boundaries] for all photon ene
groups, using 1000 cells in each of the intervals: ¥ < 0.001, 0.001< x < 0.999, and
0.999< x < 1.0. The reference grid also resolves the wavefront away from boundaries.
obtained “coarse-mesh” solutions using 10 equally spaced cells. To measure the acc
of the coarse mesh solution, we have compared the energy-integrated radiation inte
against the reference solution at three times during the transient.

This is a fully nonlinear problem in that the opacities are updated at every time <
based on the latest estimate of the material temperature, and it is therefore a very rig
test of the SCB method. In this time-dependent scenario we ask, given only the s
initial and boundary conditions, whether the SCB scheme using a coarse mesh proc
accurate results during the transient phase. In Fig. 8 we plot the spatial distribution o
integrated radiation intensity at three different times during the heating of the slab.
observe remarkable agreement with the reference solution for the interior points—el
are <6%—despite large errors at the left boundary [about 45%]. [We have plotted o
cell-averaged quantities from the coarse-mesh solution.] Errors in the material temper
are also high for the left boundary point (about 20%), but are only about 2% for intel
points. These results demonstrate that even with a very coarse grid (that does not resol
boundary layers) we obtain excellent time-dependent results in the interior of the probl

VII. DISCUSSION

This paper was motivated by the need to obtain accurate numerical solutions to (nonlir
radiative transfer problems. Toward that end we have analyzed and tested a particular n
ical method for radiative transfer problems in which the photon intensity is a function of ¢
spatial coordinate, one direction variable, frequency, and time. The method discretize
spatial variable using a subcell-balance method called SCB, the direction variable usin
discrete-ordinates method, the frequency variable using the multigroup approximation
thetime variable using a method thatis essentially fully implicit (FI/MG/DO/SCB for shor

Our choice of spatial discretization was motivated by the excellent behavior of
SCB/discrete-ordinates method in thick, diffusive, one-group, steady-state problems [9
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FIG. 8. Spatial distribution of integrated radiation intensity at three times [t1, t2, t3] during the heating
a slab by a monoenergetic beam of radiation incident at a grazing angle. The vertical line segmefit iat
actually the solution in the boundary layer.

SCB is less accurate away from the thick diffusive limit, even in one-group steady-s
problems [10,11], so it is not the final answer to spatial discretization of radiative tra
fer problems. (It does have second-order truncation error in the fine-mesh limit, bu
intermediate-mesh performance is relatively poor.) However, it is possible to develof
lated spatial discretizations that produce the SCB solution in thick diffusive regions
perform much better in other limits [10,11]. Thus, we study the comparatively sim|
FI/MG/DO/SCB method not only for its own intrinsic interest, but also for its impact c
the development and understanding of other (more complicated and more accurate) s
discretizations that behave like SCB in the thick diffusive limit.

Our analysis and results indicate that if a problem is optically thick in all frequency groi
that contain significant radiant energy, the FI/MG/DO/SCB method is quite accurate. -
is true, remarkably, even when there are sharp boundary layers that are not resolved |
spatial grid. Our analysis and results further indicate that if a problem is optically thir
frequency groups populated by the incident intensity, but thick to photons that are em
by the matter in the problem, the numerical method is again quite accurate. We emph
that our analyses and results apply to realistic problems—there were no simplificat
made, for example, to remove the nonlinearity. The most significant simplifying facto
that we considered only one spatial dimension.

The results in this paper complement and extend those recently obtained by NV
etal.[7]. The SCB scheme analyzed here is slightly different from the LLD scheme analy
by Morelet al.in that it uses two different opacities per cell; our results show that this lee
to slight (but not significant) differences in the two methods’ performances on unresol
boundary layers. We have also analyzed the initial layer, showing that the FI/MG/DO/S



400 ADAMS AND NOWAK

method performs well even with unresolved initial layers. Since this analysis did not
pend on having two opacities per cell, it holds also for the FI/MG/DO/LLD method. O
analysis of the SCB and LLD performances on unresolved boundary layers led to s
guantitative predictions for a variety of scenarios; a large suite of detailed numerical
culations confirmed all of these predictions. We also included transient test problems
unresolved wavefronts, showing that the robustness of the FI/MG/DO/SCB scheme
for such problems (which basically have moving boundary and initial layers). Finally,
included the first asymptotic analysis, to our knowledge, of radiative transfer problems
are optically thin in some frequency groups but optically thick in others. Our theoretical f
dictions were quite sharp, including an analytic solution of problem with model opaciti
and were precisely confirmed by numerical testing.

The results presented here and by Maehl. suggest several areas for further study
First, given that the most significant simplification here was the assumption of 1D ¢
geometry, a logical next step is to extend our analyses to multidimensional problems
are actively pursuing this. Second, this analysis should be applied to other discretiz:
schemes that have been used or proposed for radiative transfer. Third, the analysis s
be extended to examine the radiation intensity thansttedfrom optically thick slabs.
Although the present analysis is silent on this subject, we are sure that the intensity en
from the surface at an unresolved boundary layer has an incorrect distribution in frequt
and direction. Further research should be able to quantify this.

APPENDIX

Analytic Estimate of Solution in Thick/Thin Problem

In this Appendix we describe our technique for analytically solving (with one appro
mation) a multigroup radiative transfer problem that is driven by a monodirectional be
in a high-frequency group—a group for which the problem is not very optically thick. T
basic idea is to recognize that the radiation intensity has two components: an uncoll
component and an “emitted” component. The emitted photons are likely to be in freque
groups for which the problem is optically thick; further, this emission source varies on
scale of a high-frequency mean-free path, which we assume is resolved by the spatial
Thus, the asymptotic diffusion-limit analysis developed in the body of this paper shc
apply to the emitted component.

The problem we wish to solve is

0Ymg
X

2 og(TONB(T()) =Y 0g(TON Y wmmg(X),  (ALb)
*] g m

Mm + og(T (X)) ¥m,g(X) = og(T (X)) Bg(T (X)), (Al.a)

Y¥m,g(0) = lg, for m=mg andum > 0, and forg = go = high-frequency group (Al.c)
Yim,g(X) = ¥ g(X), uwm=—un<0,allg. (A1.d)

We begin with expressions for the uncollided intensity:

Voo X) = lo exn{— /O dX’Ggo(T(X’))/umo}, (A2.3)
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X X
w&wm=hwm{{ﬂdm%ﬁu%+/cw%wnmﬂ/ﬁm}

No: tny = — . (A2.D)

The emitted component satisfies

e

a m,
fm 1gx,g +09(T (X)) ¥m g(X) = (T () By (T (X)), (A3.a)

23 " og(TONB(TC0) =Y 0g(TC0) Y wmpfy o(X)
g 9 m
+ Ugo (T (X))wmo I:wfl:lj"lo,go (X) + wrl{lo,go (X)] ’ (A3b)

Vmg(0 =0, um>0,all g, (A3.c)
VX =V84(X),  um=—pn<0,allg. (A3.d)

The desired solution is the sum of the emitted and uncollided intensities.

We shall assume that the temperature distribution in the slab is such that the emr
photons are primarily in frequency groups for which the slab is optically thick. In this cz
the asymptotic analysis developed in this paper applies to the emitted component, ar
find that the leading-order emitted component is Planckian,

Y (X) = By(TOx), (A4)

where the leading-order temperature satisfies an equilibrium diffusion equation:

d ac d [(T(O)(X))ﬂ
_&30R(T(°>(x)) dx

= 0, (T 00 ) Wy [V o) + ¥ (X¥)]. (A5)

[The subscripR on the opacity denotes the Rosseland mean.] The boundary condition:s
that the leading-order temperature goes to zeso=a0 and its derivative with respect o
goes to zero at = X.
If we can solve for the uncollided intensity and then somehow solve the equilibril
diffusion equation for the leading-order temperature, we will have solved the entire probl
We shall make one approximation in our solution of Eq. (A2) for the uncollided intensi

exp{ - /0 dX oy (T (x/))/umo} ~ exp{ —0g,(T)X/im, } = €XD{ —0g,X/tmy }- (A6)

That is, for purposes of computing the incident intensity, we shall use a constant ops
evaluated at some average temperature. Then we obtain

lo [e_E‘JOX/“mO + e—EgO(X-&-X—x)/MmO]

[Vino.g () + ¥y g(¥)]

— |0 e_l;gox//’vmo [e‘;go(x_x)/llmo + e“;go(X—X)/llmO:I

- 0g, (X — X
= 2l e 0 X/Hm cos)—(L)). (A7)
Hmgy
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We shall now solve Eq. (A5), the equilibrium diffusion equation, with Eq. (A7) substitut
on the right-hand side. At this point we must assume something about the opacities, a
described in the body of the paper, we assume a model opacity of the form

1— efhv/kT

U(U, T) = ,OO'OW

(A8)
Given this functional form, and assuming that the multigroup structure is fine enough
group sums accurately approximate their respective integrals, we have for the Ross
mean

foodvm %(kT)34!§(4)
or(T) = —2 1 [”z;B(v,T) == L kKkT)6711(c(6) + ¢(7)’ (A9)
fO vaR(v,T) oT poo h ‘2 C é‘

where¢ () is the Reimann zeta function:

o]

. 1
£(j) = 2 (A10)

We can simplify Eq. (A9) to find

1 1 (KT)371(¢(6) + ¢(7)) 1 3
- =~ (210)(0.9358. .)(kT)5. All
or(T)  pog 412¢(4) po0 (210¢ KD (ALD)

We use the chain rule to find

d7*  dT*dT’  d(THY"dT’ 4 4/7_1d_'l'7 4 _,dT’

— — = 717 = —_ Al2
dx dT7 dx dT? dx 7( ) dx 7 dx (AL2)
We combine Egs. (A11) and (A12),
ac dT? 1 4dT7 dT’
- = 210)(0.9358 . ) k- — = A—— Al3
3or(T) dx ,oao(ac)( O¢ ) 7 dx dx’ (AL3)
where
K
= 2% 120(0.9358 . ). (A14)
PO0

Now if we put everything together, our equilibrium diffusion equation becomes

2

_% [(T(O)(X)ﬂ - %GQO (TO00)) w210 & 0 */timo cos)(

0g, (X —X)

Mo

) . (A15)

We shall once again invoke the approximation that the gmuppacity is replaced by a
suitable average, which we caj},. The boundary conditions on the solution, which is nov
the leading-order temperature to the seventh power, are that it vanishesOaénd itsx-
derivative vanishes at= X. The solution is not difficult to obtain; it is

2 — X og (X —
(T(O)(x))7 = = W, uh, lo € X /Hmo {cosk(ag") — cosf(tjg"(ﬂx)ﬂ. (A16)

Ugo A //Lmo mp
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We employed this expression in a spreadsheet and took /i@tlilpower to obtain our
analytic estimate of the leading-order temperature in the slab. The expression depen
the average opacityg,, So to begin we simply insertegy, evaluated at some reasonable
temperature. At that point everything was known and we could plot the uncollided ene
density, the emitted energy density, the total radiation energy density, and the matter
perature as functions of position. Given the matter temperature distribution, we imprc
our estimate of an average temperature at which to evaliyand re-generated the plots.
(The plots were not very sensitive to the temperature we chose,fpso this iteration
converged quickly.) This is how Figs. 2a and 2b were generated.
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