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We consider a time-dependent, energy-dependent, nonlinear radiative transfer
problem in which opacities are large [O(ε−1)] and interior sources are small [O(ε)].
An asymptotic analysis of this problem asε→ 0 leads to the equilibrium diffusion
equation in the interior of the system, along with boundary conditions and initial
conditions for this equation. We apply the same asymptotic analysis to a discrete ver-
sion of the problem, in which the frequency variable is discretized by the multigroup
method, the direction variable by the discrete-ordinates method, the time variable by
the fully implicit method, and the spatial variable by a subcell-balance method. We
find that asε → 0 the discrete solution satisfies a robust discretized version of the
correct equilibrium diffusion equation, with boundary conditions and initial condi-
tions that are remarkably accurate. The analysis thus predicts that if a spatial grid
is chosen that resolves interior temperature gradients, then the numerical method
obtains an accurate solution in the interior of the system, even though the optical
thickness of the spatial cells tends to∞ and boundary layers in the transport solution
are not resolved. We go a step further to analyze problems that are optically thin at
some photon frequencies but thick at others, and show that once again the discrete
solution is remarkably accurate. We present numerical results that verify these and
other predictions of the analyses.c© 1998 Academic Press

Key Words:radiative transfer; asymptotic analysis; computational transport; spatial
discretization.

I. INTRODUCTION

The motivation for this work is the need to obtain accurate numerical solutions to
radiative-transfer problems of practical interest. Often in such problems there are optically
thick regions in which absorption and re-emission are the dominant physical processes that
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determine the radiation energy density. Such regions are “diffusive” in the sense that in their
interiors the radiation energy density, to leading order, satisfies the “equilibrium” diffusion
equation [1].

Most practical radiative-transfer problems cannot be solved analytically and hence require
numerical methods. The extreme optical thickness of these problems forces spatial grids
to be very coarse, with cells that are thousands of mean-free paths thick (or more) in low-
frequency groups. It is therefore important to understand how numerical methods behave in
optically thick regions with coarse spatial grids. Many studies have been done on this subject,
but most consider a relatively simple problem: linear, steady-state, single frequency group
[2–5]. A recent study [6] considered a more realistic problem with an arbitrary number of
frequency groups, but it was also linear and steady state. In a very recent development, Morel
et al.[7] studied a realistic radiative-transfer problem that is nonlinear, time dependent, and
frequency dependent. The authors performed an asymptotic analysis of a discrete version
of this problem, in which the frequency variable is discretized by the multigroup method,
the direction variable by discrete ordinates, the time variable fully implicitly, and the spatial
variable by a linear discontinuous finite-element method with mass-matrix lumping (the
“lumped linear discontinuous” method, or “LLD”). Their study assumes one-dimensional
planar symmetry. Their analysis and numerical results show that the discrete solution is
fairly accurate, even when the spatial grid does not resolve boundary layers. This is a
remarkable result, because the optical thickness of the spatial cells in these problems tends
toward∞, and transport discretizations are usually known to be accurate only when the
optical thickness of spatial cells is much less than unity.

The work we present here complements that of Morelet al. The main differences are:

• We introduce the “simple” corner-balance (SCB) method, which is based on en-
forcing energy conservation on subcells. We describe SCB for an arbitrary grid in two
dimensions and show it in detail for planar (slab) geometry.
• In slab geometry, SCB is almost identical to LLD; however, our SCB method uses

a different opacity in each subcell, whereas the LLD method analyzed by Morelet al. uses
a single opacity throughout each cell.
• We present an analysis of the “initial layer,” obtaining initial conditions satisfied by

the leading-order discrete solution. We compare these against the initial conditions satisfied
by the leading-order exact solution and show that they are almost identical.
• We perform a thorough analysis of boundary-layer behavior, using a model opacity

to make sharp predictions about the behavior of the SCB, LLD, and exact solutions of
problems with different incident photon distributions.
• We analyze problems that are optically thick in some frequency ranges but optically

thin in others. This kind of problem is often encountered in practice.
• We manipulate the boundary condition for the leading-order interior solution into a

form that is an obvious generalization of that obtained by previous one-group studies.
• We study a wider variety of test problems, including several with wave fronts and

with severe boundary layers.

The remainder of this paper is organized as follows. In the next section we describe
the problem and summarize what is known about its analytic solution in thick diffusive
regions. In Section III we present an SCB method and use it to discretize the radiative-
transfer problem. In Section IV we use an asymptotic analysis to show that the SCB solution
satisfies, to leading order in thick diffusive regions, a robust and accurate discretization of
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the equilibrium diffusion equation. We derive the initial and boundary conditions satisfied
by this leading-order solution. This analysis predicts that the SCB scheme will achieve
reasonably accurate numerical results inside the physical system even if the grid does not
resolve boundary layers or initial layers in the transport solution. Section V is devoted to
analyzing problems that are thick in certain frequency ranges, but thin or intermediate in
others. In Section VI we test the predictions of the asymptotic analysis with a series of steady-
state and transient test problems, some of which have extremely sharp boundary layers and
some of which have wave fronts moving through the slab. We offer some concluding remarks
in the final section.

II. ANALYSIS OF ANALYTIC SOLUTION

We consider the planar-geometry radiative transfer problem

ε

c

∂ψ

∂t
(x, µ, ν, t)+µ∂ψ

∂x
(x, µ, ν, t)+ σ(x, ν, T)

ε
ψ(x, µ, ν, t) = σ(x, ν, T)

ε
B(ν, T), (1)

εCp(x, T)
∂T

∂t
=
∫ ∞

0

∫ 1

−1

σ(x, ν, T)

ε
[ψ(x, µ, ν, t)− B(ν, T)] dµ dν + εQ(x, t), (2)

ψ(0, µ, ν, t) = F(µ, ν, t), 0< µ ≤ 1, (3a)

ψ(X, µ, ν, t) = G(µ, ν, t), −1≤ µ < 0, (3b)

ψ(x, µ, ν,0) = ψi (x, µ, ν), (4)

T(x, 0) = Ti (x), (5)

whereB is the Planck function (integrated over the azimuthal direction, yielding a factor
of 2π to which the reader may not be accustomed):

B(ν, T) = 4πhν3

c2

1

ehν/kT − 1
. (6)

We also define the radiation energy density:

ER(x, t) = aT4
R(x, t) =

1

c

∫ ∞
0

dν
∫ 1

−1
dµψ(x, µ, ν, t). (7)

If we set the parameterε to unity, then Eqs. (1)–(5) constitute a radiative-transfer problem
in standard notation:c is the speed of light,ψ(x, µ, ν, t) is the specific intensity of particles
at pointx traveling in the “direction”µ at time t , σ(x, ν, T) is the opacity of the mate-
rial at x at frequencyν given a material temperatureT(x, t), Q(x, t) is the interior heat
source,h is Planck’s constant,k is Boltzmann’s constant, anda is the radiation constant
(8π5k4)/(15h3c3).

If we take the functionsψ, σ, T , andB to be scaled such that they areO(1), and letε
be a small parameter that tends toward zero, then Eqs. (1)–(5) are the starting point for an
asymptotic analysis. The reader is encouraged to consult Refs. [1, 8] for justifications of
this scaling and for details concerning the asymptotic analysis that we will now summarize
specifically for slab geometry. Larsenet al. show [1] that away from boundaries, asε→ 0
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the leading-order analytic solution is Planckian,

ψ(0)(x, µ, ν, t) = B
(
ν, T (0)(x, t)

)
, (8)

where the leading-order temperatureT (0) satisfies the energy-balance equation

a
∂

∂t

[(
T (0)

)4
]
+ Cp

(
x, T (0)

)∂T (0)

∂t
+ ∂ J(1)

∂x
= Q(x, t), (9)

where the O(ε) “net flux” or “net current density”J(1) is

J(1)(x) = − ac

3σR
(
x, T (0)

) ∂(T (0)
)4

∂x
. (10)

Here we have used the Rosseland mean opacity:

1

σR(x, T)
≡
∫∞

0
1

σ(x,ν,T)
∂B(ν,T)
∂T dν∫∞

0
∂B(ν,T)
∂T dν

=
∫∞

0
1

σ(x,ν,T)
∂B(ν,T)
∂T dν

4acT3
. (11)

We can combine Eqs. (9) and (10) to form a diffusion equation:

a
∂

∂t

[(
T (0)

)4
]
+ Cp

(
x, T (0)

)∂T (0)

∂t
− ∂

∂x

ac

3σR
(
x, T (0)

) ∂(T (0)
)4

∂x
= Q(x, t). (12)

Pomraning [8] analyzes the “initial-layer” problem to find the initial condition for the
leading-order temperature

a
[
T (0)(x, 0)

]4+ E
(
T (0)(x, 0)

) = 1

c

∫ ∞
0

dν
∫ 1

−1
dµψi (x, µ, ν)+ E(Ti (x)),

whereE is the matter energy density. In our formulation of Eq. (2) we have assumed that
dE/dt = Cp(T) dT/dt, which leads to

a
[
T (0)(x, 0)

]4+ C̄p(x)T
(0)(x, 0) = 1

c

∫ ∞
0

dν
∫ 1

−1
dµψi (x, µ, ν)+ C̄p(x)Ti (x), (13)

whereC̄ p(x) is an average over the interval(Ti (x), T (0)(x, 0)). Thus, theT (0) that satisfies
this equation is the appropriate initial condition for our Eq. (12).

Pomraning also develops a half-space problem whose solution would yield the boundary
condition satisfied by the leading-order temperature. This problem appears too difficult
to solve analytically, but Pomraning uses a variational procedure to find an approximate
solution. At the left boundary in our planar problem, for example, this yields

T (0)(x, t)|x=0 ≈ Tvar, where

ac(Tvar)4 = ac
(
Tex

M

)4+ σR
(
0, Tex

M

) ∫
dν
∫ 1

0
dµ3µ2 F(ν, µ, t)− B

(
ν, Tex

M

)
σ
(
0, ν, Tex

M

) , (14a)
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where we have defined the exact “Marshak” boundary temperature:

ac
(
Tex

M

)4 = 2
∫

dν
∫ 1

0
dµ2µF(ν, µ, t). (14b)

Similarly, at the right boundary Pomraning’s result is

T (0)(x, t)|x=X ≈ Tvar, where

ac(Tvar)4 = ac
(
Tex

M

)4+ σR
(
X, Tex

M

) ∫
dν
∫ 0

−1
dµ3µ2 G(ν, µ, t)− B

(
ν, Tex

M

)
σ
(
X, ν, Tex

M

) , (15a)

ac
(
Tex

M

)4 = 2
∫

dν
∫ 0

−1
dµ2|µ|G(ν, µ, t). (15b)

We can rewrite Pomraning’s boundary condition in a form that more closely resembles
results from one-frequency-group diffusive problems. We define a Planckian-weighted in-
verse opacity: ∫

dν
B(ν, T)

σ (x, ν, T)
= 1

σP(x, T)

1

2
acT4. (16)

Then if we make liberal use of the definition (14b), it is possible to manipulate Eq. (14a)
into the form

ac(Tvar)4 =
∫

dν
∫ 1

0
dµ

[
2µ

(
2− σR

(
0, Tex

M

)
σP
(
0, Tex

M

))+ 3µ2 σR
(
0, Tex

M

)
σ
(
0, ν, Tex

M

)]F(ν, µ, t). (17)

We note that given only one frequency group the opacity ratios become unity, and we have

ac
(
Tvar

1−grp

)4 =
∫ 1

0
dµ[2µ+ 3µ2]F(µ, t). (18)

(Similar results hold at the right boundary.) This is a variational approximation to the exact
one-group boundary condition

ac
(
Tvar

1−grp

)4 =
∫ 1

0
dµ2W(µ)F(µ, t), (19)

whereW(µ) is a known tabulated function (
√

3µ/2 times Chandrasekhar’sH -function),
which has the approximations

W(µ) = 0.91µ+ 1.635µ2± a few %≈µ+ 3µ2/2. (20)

To summarize, asε→ 0, the leading-order part of the interior solution (valid away from the
initial layer att = 0 and boundary layers atx= 0 andx= X) is defined by Eq. (8), where
the leading-order temperature satisfies Eqs. (12), with initial condition given by Eq. (13)
and boundary conditions approximately given by Eqs. (14) and (15). Thus, the asymptotic
interior transport solution satisfies a nonlinear one-group diffusion equation with known
initial conditions and approximately known boundary conditions. In this paper we will
show that the asymptotic solution of adiscretizedtransport equation satisfies a robust
discretization of this nonlinear diffusion equation, with boundary and initial conditions that
are very good approximations to those described above.
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III. THE “SIMPLE” CORNER-BALANCE METHOD

We now describe the simplest member of a family of subcell-balance methods developed
recently for spatial discretization of the transport equation. This method was first described
in a conference report [9] and generalized somewhat (for slab geometry) in a later summary
[10]; more complete descriptions of it and a related method are found in Ref. [11].

We begin with a transport equation inXYgeometry

µ
∂ψ

∂x
+ η∂ψ

∂y
+ σ(x, y)ψ(x, y, EÄ) = S(x, y, EÄ), (x, y)∈ D, (21a)

ψ(x, y, EÄ) = F(x, y, EÄ), (x, y)∈ ∂D, En(x, y) · EÄ < 0, (21b)

where∂D is the boundary of the spatial domainD and En is the outward unit normal.
We divide the problem domain into polygonal cells and divide each cell into quadrilateral
subcells that we call “corners,” as shown in Fig. 1. The vectors appearing in Fig. 1 are edge
lengths times outward unit normals for cornerc. Cornerchas two neighboring corners inside
its polygonal cell, which we denote byc1 (counterclockwise fromc) andc2 (clockwise).
The corner has four bounding surfaces. Two surfaces areinsidethe cell:s1 (adjacent toc1)
ands2 (adjacent toc2). The other two surfaces are on the cell boundary, and are denoted
simply by “+” or “−” subscripts as shown.

We integrate the transport equation over cornerc and use the divergence theorem to
obtain a statement of conservation, or “balance,” over the corner,

EÄ · [ EAc+ψc+( EÄ)+ EAc−ψc−( EÄ)+ EBc+ψs1(
EÄ)+ EBc−ψs2(

EÄ)]+ σcVcψc( EÄ) = VcSc( EÄ),
(22)

whereVc is the area of the corner and subscripts on functions denote averages:ψc is the aver-
age over cornerc,ψs1 is the average over the surfaces1, etc. We use simple approximations
to close the system

ψs1 =
(
ψc + ψc1

)/
2, (23a)

ψs2 =
(
ψc + ψc2

)/
2, (23b)

FIG. 1. A “corner” subcell,c, and its neighborsc1 andc2.
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ψc± =
{
ψc, EAc± · EÄ > 0,

ψinc,c± (known), EAc± · EÄ < 0.
(23c)

This is SCB in its original form. As presented, the method has the following known prop-
erties [11]:

• Given rectangular cells, it is a robust and accurate method for one-group linear
steady-state problems that are optically thick and diffusive.
• Given nonrectangular cells it gives reasonable solutions for thick, diffusive one-

group linear steady-state problems, but its accuracy degrades as the grid distorts.
• Its accuracy is relatively poor away from the thick diffusive limit.

To overcome the latter problem, Eaton and Adams replaced Eq. (23c) in the one-dimensional
SCB method with a more general equation, with very good results [10]. Adams took a
different approach in Ref. [11] to overcome this and other problems in a 2D setting, again
with good results. Both of the newer methods yield solutions that approach the SCB solution
in the limit of thick diffusive spatial cells, at least in one-group steady-state settings. Because
the newer methods behave similarly in the thick diffusive limit, the behavior of the SCB
solution in that limit is of significant interest.

In the planar-geometry problem considered in this paper, SCB consists of two exact half-
cell balance equations and two approximations per cell. The first approximation is that the
cell-midpoint intensity equals the average,

ψ j = (ψ j R + ψ j L )/2, (24)

and the second is that the exiting intensity from a cell equals the upstream half-cell average,

ψ j+1/2 =
{
ψ j R, 1≤ j ≤ N, µ > 0;
ψ j+1,L , 0≤ j ≤ N− 1, µ < 0.

(25)

Here the subscriptj refers to thej th cell and j ± 1/2 to its edges. The subscriptsj L/j R
denote averages in the left/right halves of cellj , andµ is thex-component of the direction
vector.

In the next section we apply SCB to the spatial variable in the radiative transfer equations,
along with a finite-difference method for the time variable, the discrete-ordinates method
for the direction variable, and a multigroup method for the frequency variable. We then
perform an asymptotic analysis of this fully discrete problem.

IV. ASYMPTOTIC ANALYSIS OF THE DISCRETE PROBLEM

When we apply the discrete-ordinates (SN) angular discretization, the multigroup dis-
cretization of frequency, and an (essentially) fully implicit (FI) time discretization to the
scaled equations (1)–(2), we obtain

ε

c

ψmg(x)− ψk
mg(x)

1tk
+ µm

dψmg

dx
+ σg(x)

ε
ψmg(x) = σg(x)

ε
Bg(T), (26)

εCp
T(x)− Tk(x)

1tk
=

G∑
g=1

M∑
m=1

wm
σg(x)

ε
[ψmg(x)− Bg(T(x))] + εQ(x), (27)

whereµ is thex-component of the direction vectorEÄ, {(wm, µm),m= 1, . . . ,M} is the
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discrete-ordinates quadrature set, andg is the frequency-group subscript. Here thek super-
script indicates the beginning of the time step(tk, tk+1), ψ andT without superscript are
both time-step-averaged and end-of-step values, andQ is also averaged over the step. To
avoid restricting the validity of this analysis we do not specify the definitions of the opacity
and the specific heat in these equations. The opacity, for example, could be held explicit
(i.e., evaluated atTk), made fully implicit (evaluated atT = Tk+1), or anything in between
(such as evaluated at an extrapolated temperature).

We now apply the SCB spatial discretization [10], described in the preceding section,
to these equations. We assume a spatial grid ofN cells, with cell edges defined byxj±1/2,

j = 1, . . . , N. The subscriptsj R and j L indicate left and right half-cell averages, respec-
tively, in cell j . First we average Eqs. (26) and (27) over each half-cell:

ε

c

ψmg, j R − ψk
mg, j R

1tk
+ µm

1xj /2
(ψmg, j+1/2− ψmg, j )+ σg j R

ε
ψmg, j R = σg j R

ε
Bg, j R, (28a)

ε

c

ψmg, j L − ψk
mg, j L

1tk
+ µm

1xj /2
(ψmg, j − ψmg, j−1/2)+ σg j L

ε
ψmg, j L = σg j L

ε
Bg, j L , (28b)

εCp, j H
Tj H − Tk

j H

1tk
=

G∑
g=1

M∑
m=1

wm
σg j H

ε
[ψmg, j H −Bg, j H ]+εQj H , H = L or R. (29)

Next we impose our closure approximations:

ψmg, j = 1

2
(ψmg, j R + ψmg, j L ), (30a)

ψmg, j+1/2 =


Fmg = Fg(µm), j = 0, µm > 0;
ψmg, j R, 1≤ j ≤ N, µm > 0;
Gmg = Gg(µm), j = N, µm < 0;
ψmg, j+1,L , 0≤ j ≤ N − 1, µm < 0.

(30b)

Here the sources and boundary conditions are averages over the time step:

Qj H ≡ 1

1tk

∫ tk+1

tk

QH (t) dt, H = L or R,

(31)

Fmg ≡ 1

1tk

∫ tk+1

tk

Fmg(t) dt, Gmg ≡ 1

1tk

∫ tk+1

tk

Gmg(t) dt.

Into these equations we introduce the expansions

ψmgj H = ψ(0)
mgj H + εψ(1)

mgj H + ε2ψ
(2)
mgj H + · · · , (32a)

Tj H = T (0)
j H + εT (1)

j H + ε2T (2)
j H + · · · , (32b)

for each intensity and temperature that appears in the discrete system of equations. We
introduce similar expansions for temperature-dependent quantities such asσ andB.

In what follows we shall often make use of the following notation:

[ fg](k) ≡ coefficient ofεk in the product of the expansions off andg.

Thus, for example, [σψ ](1) is a compact way to writeσ (0)ψ(1) + σ (1)ψ(0).



           

374 ADAMS AND NOWAK

A. Interior Analysis

From theO(1/ε) terms in Eqs. (28) we find that

ψ
(0)
mg, j H = B(0)g j H = Bg

(
T (0)

j H

)
, H = L or R, all j andg, (33)

where theT (0)
j H are as yet undetermined. This result, which states that the leading-order SCB

intensities are isotropic and Planckian, is exactly like the analytic result, Eq. (8).
If we add Eq. (28a) for cellj to Eq. (28b) for cellj +1, consider the O(ε) terms, multiply

bywm, and sum over angles and groups, we obtain

a

1tk

[
1xj

2

((
T (0)

j R

)4− (T (0)k
j R

)4
)
+ 1xj+1

2

((
T (0)

j+1,L

)4− (T (0)k
j+1,L

)4
)]
+ J(1)j+1− J(1)j

+
∑

g

∑
m

wm

{
1xj

2
[σ(ψm − B)](2)g j R+

1xj+1

2
[σ(ψm − B)](2)g, j+1,L

}
= 0,

j = 1, . . . , N − 1, (34)

where the mid-cell “currents” (net fluxes)J(1) are defined:

J(1)j ≡
G∑

g=1

M∑
m=1

wmµmψ
(1)
mgj. (35)

In obtaining Eq. (34) we assumed that the leading-order intensityψ(0)k at timetk is Planckian
at the temperatureT (0)k. For all but the first time step we know from Eq. (33) that this is
true, so Eq. (34) certainly holds fork> 0. We must defer a precise statement about the
initial time step (k = 0) until the initial-layer analysis in the next subsection.

We can simplify Eq. (34) somewhat by using theO(ε) terms from Eq. (29), which are

∑
g

∑
m

wm
1xj

2
[σ(ψm − B)](2)g j H =

1xj

2
C(0)

p, j H

T (0)
j H − T (0)k

j H

1tk
− 1xj

2
Qj H . (36)

Using this equality we can rewrite Eq. (34) as

a

1tk

[
1xj

2

((
T (0)

j R

)4− (T (0)k
j R

)4
)
+ 1xj+1

2

((
T (0)

j+1,L

)4− (T (0)k
j+1,L

)4
)]

+ 1

1tk

[
1xj

2
C(0)

p, j R

(
T (0)

j R − T (0)k
j R

)+ 1xj+1

2
C(0)

p, j+1,L

(
T (0)

j+1,L − T (0)k
j+1,L

)]
+ J(1)j+1− J(1)j =

1xj

2
Qj R + 1xj+1

2
Qj+1,L , j = 1, . . . , N − 1. (37)

We recognize that this is simply the spatial integral fromxj to xj+1 and time integral fromtk
to tk+1 of the analytic leading-order energy balance equation (9), at least if the specific heats,
opacities, and net fluxes are appropriately time averaged. Thus, this equation is essentially
exact.

The next part of this analysis will show that the leading-order temperatures are continuous,
that is, thatT (0)

j R = T (0)
j+1,L . It will also find the leading-order temperatures in the boundary
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half-cells,T (0)
1L andT (0)

N R. We begin with theO(1) terms of Eqs. (28) and (29):

µm

1xj /2

(
ψ
(0)
mg, j+1/2− ψ(0)

mg, j

)+ [σ(ψm − B)](1)g j R = 0, (38a)

µm

1xj /2

(
ψ
(0)
mg, j − ψ(0)

mg, j−1/2

)+ [σ(ψm − B)](1)g j L = 0 (38b)

0=
G∑

g=1

M∑
m=1

wm[σ(ψm − B)](1)g j H , H = L or R. (39)

If we multiply Eqs. (38) bywm and sum overm andg we obtain

1

1xj /2

G∑
g=1

M∑
m=1

wmµm
(
ψ
(0)
mg, j+1/2− ψ(0)

mg, j

)+ G∑
g=1

M∑
m=1

wm[σ(ψm − B)](1)g j R = 0, (40a)

1

1xj /2

G∑
g=1

M∑
m=1

wmµm
(
ψ
(0)
mg, j − ψ(0)

mg, j−1/2

)+ G∑
g=1

M∑
m=1

wm[σ(ψm − B)](1)g j L = 0. (40b)

We see from Eq. (33) thatψ(0)
mg, j is isotropic; thus, provided the quadrature set correctly

integratesµ to zero, theψ(0)
mg, j terms in Eqs. (40) vanish. We shall henceforthassume a

symmetric quadrature set, which does correctly integrateµ to zero. We see from Eq. (39)
that the last double summation in each of Eqs. (15) is zero, and we are left with

G∑
g=1

M∑
m=1

wmµmψ
(0)
mg, j+1/2 = 0, j = 0, . . . , N,

which says that to leading order, the cell-edge net fluxes are zero. We can rewrite this as

G∑
g=1

∑
µm>0

wmµmψ
(0)
mg, j+1/2 =

G∑
g=1

∑
µm<0

wm|µm|ψ(0)
mg, j+1/2, j = 0, . . . , N. (41)

If we consider interior cell edges, which meansj = 1, . . . , N − 1, then by the definition
(30b) of the cell-edge angular fluxes we have

G∑
g=1

∑
µm>0

wmµmψ
(0)
mg, j R =

G∑
g=1

∑
µm<0

wm|µm|ψ(0)
mg, j+1,L , j = 1, . . . , N − 1.

Now we use the result (33) that the leading-order angular fluxes are isotropic and Planckian,
and we find

∑
g

B(0)g j R

( ∑
µm>0

wmµm

)
=
∑

g

B(0)g, j+1,L

( ∑
µm<0

wm|µm|
)
, j = 1, . . . , N − 1.

Because we have assumed a symmetric quadrature set andBg sums toacT4/2, this result
implies that the leading-order temperature is continuous across cell interfaces:

T (0)
j R = T (0)

j+1,L ≡ T (0)
j+1/2, j = 1, . . . , N − 1. (42)
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It follows that B(0)g andψ(0)
g are also continuous across interior cell interfaces

B(0)g j R = B(0)g, j+1,L ≡ B(0)g, j+1/2, ψ
(0)
mgj R= ψ(0)

mg, j+1,L ≡ ψ(0)
mg, j+1/2, j = 1, . . . , N − 1.

(43)

We must also consider Eq. (41) at the problem boundaries. At the left boundary we have∑
g

∑
µm>0

wmµmFmg =
∑

g

∑
µm<0

wm|µm|B(0)g,1L ,

or

ac
[
T (0)

1L

]4 ≡ acT4
M,1/2 = 2

∑
g

∑
µm>0

wm
2µm

ρ
Fmg, ρ ≡ 2

∑
µm>0

wmµm ≈ 1. (44a)

We have used the subscriptM to denote that this is a “Marshak” boundary-condition
temperature, the discrete-ordinates and multigroup approximation to Eq. (14b). A similar
result holds on the right:

ac
[
T (0)

N R

]4 ≡ acT4
M,N+1/2 = 2

∑
g

∑
µm<0

wm
2|µm|
ρ

Gmg. (44b)

Although these are the leading-order temperatures obtained by the SCB method in the
boundary half-cells, we shall see later that these arenot the boundary temperatures that
govern the interior SCB solution.

The remainder of the interior analysis is devoted to obtaining expressions forJ(1) in terms
of T (0). We return to theO(1) equations (38), each of which we divide by a leading-order
opacity:

µm

σ
(0)
g j R1xj /2

(
ψ
(0)
mg, j+1/2− ψ(0)

mg, j

)+ [ψm − B](1)g j R+
σ
(1)
g j R

σ
(0)
g j R

[ψm − B](0)g j R = 0, (45a)

µm

σ
(0)
g j L1xj /2

(
ψ
(0)
mg, j − ψ(0)

mg, j−1/2

)+ [ψm − B](1)g j L +
σ
(1)
g j L

σ
(0)
g j L

[ψm − B](0)g j L = 0. (45b)

We recognize from Eq. (33) that the last term in each equation vanishes. We multiply by
wmµm, sum overm andg, and rearrange to obtain

G∑
g=1

M∑
m=1

wmµmψ
(1)
mg, j R = −

1

σ
(0)
g j R1xj /2

G∑
g=1

M∑
m=1

wmµ
2
m

(
ψ
(0)
mg, j+1/2− ψ(0)

mg, j

)
, (46a)

G∑
g=1

M∑
m=1

wmµmψ
(1)
mg, j L = −

1

σ
(0)
g j L1xj /2

G∑
g=1

M∑
m=1

wmµ
2
m

(
ψ
(0)
mg, j − ψ(0)

mg, j−1/2

)
. (46b)

Upon adding these equations and dividing by two we obtain the desired relation between
the net currentsJ(1) and the leading-order intensities:

J(1)j = −
G∑

g=1

M∑
m=1

wmµ
2
m

(
ψ
(0)
mg, j+1/2− ψ(0)

mg, j

σ
(0)
g j R1xj

+ ψ
(0)
mg, j − ψ(0)

mg, j−1/2

σ
(0)
g j L1xj

)
. (47)
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This expression requires some manipulation before it serves our purposes. Let us first
consider interior cells, for whichψ(0)

mgj is the average ofψ(0)
mgj±1/2 [by Eqs. (33) and Eq. (43)].

Then our expression simplifies to

J(1)j = −
G∑

g=1

∑
m

wmµ
2
m

(
ψ
(0)
mg, j+1/2− ψ(0)

mg, j−1/2

1xj

)
1

2

(
1

σ
(0)
g j R

+ 1

σ
(0)
g j L

)
, j = 2, . . . , N−1.

We define a cell-averaged opacity

1

σ
(0)
g j

≡ 1

2

(
1

σ
(0)
g j R

+ 1

σ
(0)
jgL

)
(48)

and recall that the leading-order intensities are isotropic and Planckian; then we have

J(1)j = −
G∑

g=1

(
2Bg

(
T (0)

j+1/2

)− 2Bg
(
T (0)

j−1/2

)
3σ (0)g j 1xj

)
, j = 2, . . . , N − 1, (49a)

or

J(1)j = −
ac

3
〈
σ
(0)
g j

〉 (T (0)
j+1/2

)4− (T (0)
j−1/2

)4

1xj
, j = 2, . . . , N − 1, (49b)

where〈σ 〉 is an approximate cell-averaged Rosseland mean:

1〈
σ
(0)
j

〉 = G∑
g=1

{
1

σ
(0)
g j

(
Bg
(
T (0)

j+1/2

)− Bg
(
T (0)

j−1/2

)
T (0)

j+1/2− T (0)
j−1/2

)}/
G∑

g=1

(
Bg
(
T (0)

j+1/2

)− Bg
(
T (0)

j−1/2

)
T (0)

j+1/2− T (0)
j−1/2

)
.

(50)

(We have assumed here that the quadrature set correctly integratesµ2 to 2/3.) This is a
reasonable discretization of the analytic expression (10). Considering this equation and
the conservation equation (37), we see thatthe leading-order discrete solution satisfies a
reasonable discretization of the equilibrium diffusion equation, at least in the interior of the
slab after the initial time step.

B. Initial-Layer Analysis

Here we examine the first time step (k = 0), for which the analog of Eq. (37) is

a

1tk

[
1xj

2

((
T (0)

j R

)4− 1

ac

G∑
g=1

M∑
m=1

wmψi,mgj R

)

+ 1xj+1

2

((
T (0)

j+1,L

)4− 1

ac

G∑
g=1

M∑
m=1

wmψi,mg, j+1,L

)]

+ 1

1tk

[
1xj

2
C(0)

p, j R

(
T (0)

j R − Ti, j R
)+ 1xj+1

2
C(0)

p, j+1,L

(
T (0)

j+1,L − Ti, j+1,L
)]

+ J(1)j+1− J(1)j =
1xj

2
Qj R + 1xj+1

2
Qj+1,L , j = 1, . . . , N − 1. (51)

If the initial intensity in each half-cell is a Planckian at the initial temperature of the half-cell,
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then the double summations in this equation becomeacT4
i , and we have Eq. (37) again,

with T (0)k|k=0 = Ti . In the more general case we must find an initial temperature,T (0)k|k=0,
in each half-cell, such that Eq. (51) is equivalent to Eq. (37) withk = 0. It is clear that this
will be true forT (0)k|k=0 satisfying{

a
(
T (0)k

j H

)4+ C(0)
p, j H T (0)k

j H

}
k=0
= 1

c

G∑
g=1

M∑
m=1

wmψi,mgj H + C(0)
p, j H Ti, j H , H = L or R.

(52)

Thus, Eq. (52) defines the initial condition for Eq. (37). Equation (52) is a very good ap-
proximation of Eq. (13), which defines theexactinitial condition:

a
[
T (0)(x, 0)

]4+ Cp(x)T
(0)(x, 0) = 1

c

∫ ∞
0

dν
∫ 1

−1
dµψi (x, µ, ν)+ Cp(x)Ti (x).

The only differences between the initial conditions for the discrete and exact equations are
as follows:

• The integrals in the exact condition are replaced by summations in the discrete
condition. Thus, the quadrature set and group structure should be chosen such that they
accurately integrate the initial intensity.
• The Cp in the exact condition is an average over the temperature interval (Ti (x),

T (0)(x, 0)), whereas theCp in the discrete condition is determined by the details of the
time-differencing algorithm. This suggests that for greatest accuracy the time-differencing
algorithm should use an averageCp over each time interval (as opposed, for example, to
usingCp evaluated at the beginning-of-step temperature).

We conclude that the initial condition for the discretized conservation equation (37) is very
accurate in most cases.

C. Boundary-Layer Analysis

The final part of the analysis is to explore what happens at boundaries, where there can
be boundary layers that are not resolved by the spatial mesh. We consider first the cell at
the left boundary,j = 1, for which we must simplify Eq. (47). We note that

ψ
(0)
mg,3/2− ψ(0)

mg,1 = Bg
(
T (0)

3/2

)− 1

2

(
Bg
(
T (0)

3/2

)+ Bg(TM,1/2)
)

= 1

2

(
Bg
(
T (0)

3/2

)− Bg(TM,1/2)
)

(53a)

ψ
(0)
mg,1− ψ(0)

mg,1/2 =
1

2

(
Bg
(
T (0)

3/2

)+ Bg(TM,1/2)− 2ψ(0)
mg,1/2

)
. (53b)

Using these identities we rewrite Eq. (47) forj = 1:

J(1)1 = −
G∑

g=1

M∑
m=1

wmµ
2
m

(
Bg
(
T (0)

3/2

)− Bg(TM,1/2)

2σ (0)g1R1x1

+ Bg
(
T (0)

3/2

)+Bg(TM,1/2)− 2ψ(0)
mg,1/2

2σ (0)g1L1x1

)
.

(54)

We require this expression to have the same form as Eq. (49a), the expression for the net
current density in interior cells, for some value ofT (0)

1/2 that is yet undefined. That is, we
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require that

G∑
g=1

(
2Bg

(
T (0)

3/2

)− 2Bg
(
T (0)

1/2

)
3σ (0)g1 1x1

)

=
G∑

g=1

M∑
m=1

wmµ
2
m

(
Bg
(
T (0)

3/2

)− Bg(TM,1/2)

2σ (0)g1R1x1

+ Bg
(
T (0)

3/2

)+ Bg(TM,1/2)− 2ψ(0)
mg,1/2

2σ (0)g1L1x1

)
.

(55)

We must findT (0)
1/2 such that this is true. This will be the boundary condition of the discrete

interior solution. We note first that the terms involvingT (0)
3/2 cancel out of the equation [recall

the definition (48)], which leaves

G∑
g=1

(
2Bg

(
T (0)

1/2

)
3σ (0)g1

)
=

G∑
g=1

M∑
m=1

wmµ
2
m

(
Bg(TM,1/2)

2σ (0)g1R

− Bg(TM,1/2)− 2ψ(0)
mg,1/2

2σ (0)g1L

)
. (56)

To obtain an expression forT (0)
1/2 we must perform some algebra:

G∑
g=1

(
Bg
(
T (0)

1/2

)
σ
(0)
g1

)
=

G∑
g=1

M∑
m=1

wm
3

2
µ2

m

(
Bg(TM,1/2)

[
1

2σ (0)g1R

+ 1

2σ (0)g1L

− 1

σ
(0)
g1L

]
+ ψ

(0)
mg,1/2

σ
(0)
g1L

)
,

⇒
G∑

g=1

(
Bg
(
T (0)

1/2

)
σ
(0)
g1

)
=

G∑
g=1

Bg(TM,1/2)

[
1

σ
(0)
g1

− 1

σ
(0)
g1L

]
+

G∑
g=1

M∑
m=1

wm
3

2
µ2

m

ψ
(0)
mg,1/2

σ
(0)
g1L

,

⇒
G∑

g=1

(
Bg
(
T (0)

1/2

)− Bg(TM,1/2)

σ
(0)
g1

)
=

G∑
g=1

Bg(TM,1/2)

[
− 1

σ
(0)
g1L

]

+
G∑

g=1

∑
µm>0

wm
3

2
µ2

m

Fmg

σ
(0)
g1L

+
G∑

g=1

∑
µm<0

wm
3

2
µ2

m

Bg(TM,1/2)

σ
(0)
g1L

,

or

G∑
g=1

(
Bg
(
T (0)

1/2

)− Bg(TM,1/2)

σ
(0)
g1

)
=

G∑
g=1

∑
µm>0

wm
3

2
µ2

m

Fmg− Bg(TM,1/2)

σ
(0)
g1L

. (57)

We now define an approximate Rosseland mean opacity evaluated at an averageboundary-
layer temperature:

1〈
σ
(0)
1/2

〉 ≡ G∑
g=1

1

σ
(0)
g1

[
Bg
(
T (0)

1/2

)− Bg(TM,1/2)

T (0)
1/2 − TM,1/2

]/
G∑

g=1

[
Bg
(
T (0)

1/2

)− Bg(TM,1/2)

T (0)
1/2 − TM,1/2

]
. (58)

We use this to rewrite Eq. (57):

1〈
σ
(0)
1/2

〉 ac

2

[(
T (0)

1/2

)4− (TM,1/2)
4
]
=

G∑
g=1

∑
µm>0

wm
3

2
µ2

m

Fmg− Bg(TM,1/2)

σ
(0)
g1L

,
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or

ac
(
T (0)

1/2

)4 = ac(TM,1/2)
4+ 〈σ (0)1/2

〉 G∑
g=1

∑
µm>0

wm3µ2
m

Fmg− Bg(TM,1/2)

σ
(0)
g1L

. (59)

We define a Planckian-weighted inverse opacity,

G∑
g=1

Bg(TM,1/2)

σ
(0)
g,1L

= 1

σ
(0)
P,1L

1

2
acT4

M,1/2, (60)

which allows us to rewrite the boundary condition:

ac
(
T (0)

1/2

)4 =
G∑

g=1

∑
µm>0

wm

[
2µ

ρ

(
2−

〈
σ
(0)
1/2

〉
σ
(0)
P,1L

)
+ 3µ2

m

〈
σ
(0)
1/2

〉
σ
(0)
g1L

]
Fmg. (61a)

A similar result holds at the right boundary,

ac
(
T (0)

N+1/2

)4 =
G∑

g=1

∑
µm<0

wm

[
2|µ|
ρ

(
2−

〈
σ
(0)
N+1/2

〉
σ
(0)
P,N R

)
+ 3µ2

m

〈
σ
(0)
N+1/2

〉
σ
(0)
gN R

]
Gmg, (61b)

where

1〈
σ
(0)
N+1/2

〉 ≡ G∑
g=1

1

σ
(0)
gN

[
Bg
(
T (0)

N+1/2

)− Bg(TM,N+1/2)

T (0)
N+1/2− TM,N+1/2

]/
G∑

g=1

[
Bg
(
T (0)

N+1/2

)− Bg(TM,N+1/2)

T (0)
N+1/2− TM,N+1/2

]
,

(62a)
G∑

g=1

Bg(TM,N+1/2)

σ
(0)
g,N R

= 1

σ
(0)
P,N R

1

2
acT4

M,N+1/2. (62b)

Equations (61) define the boundary conditions satisfied by the leading-order SCB solution
in the interior of the slab. With these definitions, Eq. (49b) now holds for allj :

J(1)j = −
ac

3
〈
σ
(0)
j

〉 (T (0)
j+1/2

)4− (T (0)
j−1/2

)4

1xj
, j = 1, . . . , N. (63)

If we insert this into the balance equation (37) and note the continuity result (42), we obtain
a reasonable discretization of the equilibrium diffusion equation (12):

a

1tk

1xj +1xj+1

2

[(
T (0)

j+1/2

)4− (T (0)k
j+1/2

)4
]

+ 1

1tk

C(0)
pj R1xj + C(0)

p, j+1,L1xj+1

2

[
T (0)

j+1/2− T (0)k
j+1/2

]
− ac

3〈σ j+1〉1xj+1

[(
T (0)

j+3/2

)4− (T (0)
j+1/2

)4
]
+ ac

3〈σ j 〉1xj

[(
T (0)

j+1/2

)4− (T (0)
j−1/2

)4
]

= 1xj

2
Qj R + 1xj+1

2
Qj+1, L , j = 1, . . . , N − 1. (64)

Here the boundary valuesT1/2 andTN+1/2 are given by Eqs. (61). Initial valuesTk for k = 0
are given by Eq. (52).
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D. Comparison of Boundary Conditions

We now compare the boundary conditions from the SCB and LLD methods against each
other and against the variational result obtained by Pomraning. At the left boundary the
three conditions are

SCB: ac
(
T (0)

1/2

)4
∣∣∣
SCB
=

G∑
g=1

∑
µm>0

wm

[
2µm

ρ
(2− rSCB)+ 3µ2

mqg,SCB

]
Fmg, (65a)

LLD: ac
(
T (0)

1/2

)4
∣∣∣
LLD
=

G∑
g=1

∑
µm>0

wm

[
2µm

ρ
(2− rLLD )+ 3µ2

mqg,LLD

]
Fmg, (65b)

VAR: ac(Tvar)4 =
∫

dν
∫ 1

0
dµ
[
2µ(2− rvar)+ 3µ2qg,var

]
F(ν, µ, t), (65c)

where the opacity ratiosr andq are

rSCB=
〈
σ
(0)
1/2

〉
σP,1L

=
∑G

g=1
Bg(TM,1/2)

σg(TM,1/2)∑G
g=1 Bg(TM,1/2)

∑G
g=1

[
Bg(T

(0)
1/2)−Bg(TM,1/2)

T (0)
1/2−TM,1/2

]
∑G

g=1

[
1
2

(
1

σg(TM,1/2)
+ 1

σg(T
(0)
3/2)

)][
Bg(T

(0)
1/2)−Bg(TM,1/2)

T (0)
1/2−TM,1/2

] ,
(66a)

rLLD =
〈
σ
(0)
1/2

〉
LLD

σP,1
=

∑G
g=1

Bg(TM,1/2)

σg

(
TM,1/2+T(0)

3/2
2

)
∑G

g=1 Bg(TM,1/2)

∑G
g=1

[
Bg(T

(0)
1/2)−Bg(TM,1/2)

T (0)
1/2−TM,1/2

]
∑G

g=1
1

σg

(
TM,1/2+T(0)

3/2
2

)[ Bg(T
(0)
1/2)−Bg(TM,1/2)

T (0)
1/2−TM,1/2

] ,
(66b)

rvar =
σR
(
0, Tex

M

)
σP
(
0, Tex

M

) =
∫ B(ν,Tex

M )
σ(ν,Tex

M )
dν∫

B
(
ν, Tex

M

)
dν

∫ ∂B(ν,Tex
M )

∂T dν∫
1

σ(ν,Tex
M )

∂B(ν,Tex
M )

∂T dν
, (66c)

qg,SCB=
〈
σ
(0)
1/2

〉
σ
(0)
g1L

=
1

σg(TM,1/2)

∑G
g=1

[
Bg(T

(0)
1/2)−Bg(TM,1/2)

T (0)
1/2−TM,1/2

]
∑G

g=1

[
1
2

(
1

σg(TM,1/2)
+ 1

σg(T
(0)
3/2)

)][
Bg(T

(0)
1/2)−Bg(TM,1/2)

T (0)
1/2−TM,1/2

] , (67a)

qg,LLD =
〈
σ
(0)
1/2

〉
LLD

σ
(0)
g1

=

1

σg

(
TM,1/2+T(0)

3/2
2

) ∑G
g=1

[
Bg(T

(0)
1/2)−Bg(TM,1/2)

T (0)
1/2−TM,1/2

]
∑G

g=1
1

σg

(
TM,1/2+T(0)

3/2
2

)[ Bg(T
(0)
1/2)−Bg(TM,1/2)

T (0)
1/2−TM,1/2

] , (67b)

qvar(ν) =
σR
(
0, Tex

M

)
σ
(
0, ν, Tex

M

) = 1
σ(0,ν,Tex

M )

∫∞
0

∂B(ν,Tex
M )

∂T dν∫∞
0

1
σ(0,ν,Tex

M )
∂B(ν,Tex

M )
∂T dν

. (67c)
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(Equation (65b) is equivalent to the result obtained by Morelet al. [7]; we have simply
manipulated it into a different form.) The three results in Eqs. (65) obviously have the same
form, which is remarkable in itself. In words, Eqs. (65) translate to the following:

The boundary condition for the energy density is an integral over all frequen-
cies and incident directions of a weight function times the incident intensity, and
the weight function is the sum of two terms. The first term is a (temperature-
dependent) constant timesµ; the second is a temperature- and frequency-
dependent function timesµ2.

We begin our comparison by considering the very simple case of a Planckian incident
intensity:

F(ν, µ) = B(ν, T0) and Fmg = Bg(T0).

Then we haveTM = T0, and Eqs. (65) produce

ac
(
T (0)

1/2

)4
∣∣∣
SCB
=

G∑
g=1

∑
µm>0

wm

[
2µ

ρ
(2− rSCB)+ 3µ2

mqg,SCB

]
Bg(T0)

=
G∑

g=1

[(2− rSCB)+ qg,SCB]Bg(T0) (68a)

= (2− rSCB+ rSCB)
1

2
ac(T0)

4 = ac(T0)
4,

ac
(
T (0)

1/2

)4
∣∣∣
LLD
=

G∑
g=1

[(2− rLLD )+ qg,LLD ]Bg(T0) = · · · = ac(T0)
4, (68b)

ac(Tvar)4 =
∫

dν[(2− rvar)+ qg,var]B(ν, T0) = · · · = ac(T0)
4. (68c)

(Here we have used the fact that the Planck-averagedqg,X equalsr X for X = SCB, LLD, and
variational.) Thus, given a Planckian incident intensity, the leading-order interior solution
produced by the discrete methods satisfies the correct Marshak boundary condition. This is
as we would hope and expect.

In general, the most obvious difference between the discrete and variational results is
that the discrete results replace integrals with summations. This suggests two conditions
for accuracy:

(i) The quadrature set should accurately approximate two half-range integrals—µ

times the incident intensity andµ2 times the incident intensity—in each frequency group.
(ii) The group structure and group-averaged opacities should be chosen such that the

group sum ofFmg/σg is an accurate approximation of the frequency integral ofF/σ .

If we assume that the quadrature set and group structure meet these requirements, then the
differences among the three boundary conditions are due to differences in their definitions of
the two opacity ratiosr andq, defined in Eqs. (65) and (66). To help gain an understanding
of these differences we shall assume for the moment that the multigroup and quadrature
sums can be replaced by the integrals they approximate, and we shall consider a simple
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model opacity [12]:

σ(ν, T) = σ0
1− exp(−hν/kT)

(hν)3
. (69)

This model opacity has two key characteristics of real opacities: it is much larger for
hν ¿ kT than forhν > kT, and for a givenhν it decreases asT increases.

Given our model opacity we can explicitly evaluateqvar,

qvar(ν) = q0
(hν/kTM)

3

1− exp(−hν/kTM)
, (70)

whereq0 is a constant whose numerical value is approximately 0.005. The most important
feature ofqvar is that it is vanishingly small forhν ¿ kTM and very large forhνÀ kTM .
The same holds forqSCB andqLLD . As a result, if the incident intensityF is concentrated at
frequenciesν such thathν ¿ kTM , then the term containingq in the boundary condition
is negligible, and

ac(Tvar)4→ (2− rvar)

∫
dν
∫ 1

0
dµ2µF(ν, µ, t),

⇒ (Tvar)4

(TM)4
→ 2− rvar

2
. (71)

Given the model opacity we can explicitly evaluatervar,

rvar = 4

7

2ζ(6)

ζ(6)+ ζ(7) ≈ 0.57, (72)

whereζ is the Reimann zeta function,ζ(n) ≡∑∞k=1 k−n.
Thus, given incident intensities concentrated at low frequencies, the boundary condition

satisfied by the leading-order solution is lower than the Marshak boundary condition, and
the ratio of the two does not depend on temperature or any details of the incident inten-
sity F :

(Tvar)4

(TM)4 low-ν incidence
−−−−−−−→ 2− rvar

2
= 3ζ(6)+ 7ζ(7)

7ζ(6)+ 7ζ(7)
≈ 0.71. (73)

(This is the case, at least, if Pomraning’s variational result is a good approximation of
reality.) Similar conclusions hold for the discrete methods,(

T (0)
1/2

)4

(TM)4

∣∣∣∣∣
SCB

→ 2− rSCB

2
,

(
T (0)

1/2

)4

(TM)4

∣∣∣∣∣
LLD

→ 2− rLLD

2
, (74a,b)

although the ratiosrSCBandrLLD are not constants, but depend onTM andT (0)
1/2. For example,

given the model opacity, we can calculate

rSCB= 1+ α + α2+ α3

1+ α + α2+ α3+ α4+ α5+ α6
, α ≡ T (0)

1/2

/
TM . (75)
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(We have been unable to evaluaterLLD analytically, even given our model opacity.) There is
only one real positiveα that satisfies both Eqs. (74a) and (75); we have found it numerically:

α4 =
(
T (0)

1/2

)4

(TM)4

∣∣∣∣∣
SCB

low-ν incidence
−−−−−−−→ ≈0.67. (76)

This differs from the variational result, 0.71, by only 6%. Like the variational result, the
SCB result is independent of temperature and details of the incident intensity.

While we were unable to analytically computerLLD , we did evaluate it numerically and
found that it is very close to the SCB result—closer, in fact, than either result is to the
variational result. Thus, we conclude the following.

(i) Pomraning’s variational result implies that, given our model opacity, if the incident
intensity at a boundary is concentrated at low frequencies (such thathν ¿ kTM ), then the
boundary condition satisfied by the leading-order interior energy density is approximately
71% of the Marshak value.

(ii) A similar result holds for SCB; the value is approximately 67%. (This assumes
that the quadrature set accurately integratesµF over incident directions and that frequency-
group sums are accurate approximations of frequency integrals.)

(iii) A similar result holds for LLD; the value is very close to that of SCB.
(iv) The above are true regardless of temperature, angular distribution of the incident

intensity, or frequency distribution of the incident intensity, provided only that the incident
frequencies are low enough.

(v) We do not know from our analyses how accurate Pomraning’s variational estimate
is. Numerical testing with very fine meshes is our only means of assessing this.

Our first series of test problems in the numerical-results section is designed to test these
theoretical predictions, which, we remind the reader, hold only for incident intensities that
are concentrated at low frequencies.

We turn next to incident intensities concentrated at intermediate frequencies such that
the values ofqg are order 1. In such problems the directional distribution of the incident
intensity plays a significant role in determining the boundary condition satisfied by the
interior solution, because both aµ-weighted integral and aµ2-weighted integral of the
incident intensity are important. Obviously, in these problems the SCB boundary condition
will be very close to Pomraning’s variational approximation to the exact condition ifrSCB

is close torvar andqSCB is close toqvar. Returning to our model opacity, and continuing
to assume that the discrete sums are excellent approximations to the integrals, we can
analytically compute a simple relationship betweenq andr in the variational and the SCB
boundary conditions:

qvar(ν) = rvar

[
ζ(4)

120ζ(6)

(hν/kTM)
3

1− exp(−hν/kTM)

]
, (77a)

qSCB(ν) = rSCB

[
ζ(4)

120ζ(6)

(hν/kTM)
3

1− exp(−hν/kTM)

]
= rSCB

rvar
qvar(ν). (77b)

We are unable to compute a similar analytic relationship betweenqLLD andrLLD ; however,
we have observed numerically thatqLLD is usually much closer toqSCB than either is to
qvar. Given this and Eq. (77b), the difference between the numerical methods’ boundary
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condition and the variational condition boils down to the difference betweenrSCB andrvar.
Analytic expressions for these ratios (given the model opacity) are shown in Eqs. (72) and
(75). The variational value is≈0.57; the SCB value depends on the ratio of the boundary-
condition temperature to the Marshak temperature. If that ratio were small, thenrSCB could
approach unity, which is significantly different fromrvar. But how small can that ratio get?
Note that

α4 ≡
(

T (0)
1/2

TM

)4

=
∫∞

0 dν
∫ 1

0 dµ
[
2µ(2− rSCB)+ 3µ2qg,SCB

]
F(µ, ν)∫∞

0 dν
∫ 1

0 dµ[4µ]F(µ, ν)

>

∫∞
0 dν

∫ 1
0 dµ[2µ(2− rSCB)]F(µ, ν)∫∞

0 dν
∫ 1

0 dµ[4µ]F(µ, ν)
= 2− rSCB

2
. (78)

(Here we continue to assume for simplicity that the discrete angle and frequency sums
are roughly equal to the integrals they approximate.) Thus, the temperature ratio must be
greater than that which satisfies 2α4 = 2− rSCB. We found above that theα4 satisfying this
equation is≈0.67, which corresponds torSCB≈ 0.66. This shows that the factorrSCB/rvar

appearing in Eq. (77b) can never be larger than≈0.66/0.57≈ 1.16 and that this limiting
value is attained only if theq term it multiplies is unimportant! We conclude thatif the
boundary-condition temperature is lower than the Marshak temperature the SCB boundary
condition will be very close to the variational estimate obtained by Pomraning.

If, on the other hand, the boundary-condition temperature is higher than the Marshak
temperature, i.e., ifα >1, thenrSCB could be significantly smaller thanrvar, which could
potentially lead to significant error in theq term in the boundary condition. Let us examine
how largeα can be:

α4 ≡
(

T (0)
1/2

TM

)4

=
∫∞

0 dν
∫ 1

0 dµ
[
2µ(2− rSCB)+ 3µ2qSCB(ν)

]
F(µ, ν)∫∞

0 dν
∫ 1

0 dµ[4µ]F(µ, ν)

= 2− rSCB

2
+
∫∞

0 dν
∫ 1

0 dµ
[
3µ2(rSCB/rvar)qvar(ν)

]
F(µ, ν)∫∞

0 dν
∫ 1

0 dµ[4µ]F(µ, ν)

<
2− rSCB

2
+ 3

4

rSCB

rvar

 sup
µ,ν such that
F is important

{µqvar(ν)}



< 1+ rSCB

 3

4 · 0.57
sup

µ,ν:F is
important

{µqvar(ν)} − 1

2



< 1+ 1

α3

1.32 sup
µ,ν:F is
important

{µqvar(ν)} − 1

2

 . (79)

(Here we used the fact thatrSCB> 1/α3 for finite positiveα.) Clearly,α can become large
only if qvar(ν) becomes large. But our assumption at the moment is thatq is order 1, which
means thatα cannot be much greater than unity. Ifα is not much greater than unity, then
rSCBwill be close torvar, and thereforeqSCBwill be close toqvar. We conclude that if incident
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intensities are concentrated at intermediate frequencies such thatq is close to unity, the SCB
solution will satisfy boundary conditions that are quite close to the variational estimate of
the exact conditions.

Finally, we consider incident intensities concentrated at high frequencies such that
hνÀ kTM . It is clear from Eqs. (67c) and (70) that at these frequenciesqvar can become
very large, causing the 3µ2 term to dominate the 2µ term in Eq. (65c). This can lead to
boundary-condition temperatures much larger than the Marshak temperature. Further, as
shown in Eq. (79), a large value ofq also leads to a largeα and thus to anrSCB/rvar ratio
that is small, and hence to an SCB boundary condition that is significantly lower than the
variational estimate. This effect would be maximized for normally incident intensities and
minimized for grazing-angle incident intensities. However, this result is somewhat mislead-
ing, because it comes from an asymptotic analysis that assumes the problem is optically
thick at every frequency. In reality, problems tend to be optically thin, or at least not very
thick, at frequencies such thathνÀ kTM . Thus, one must ask whether the analyses pre-
sented thus far have any bearing on problems with incident intensities at high frequencies.
We address this question in Section V.

In summary, the boundary condition satisfied by the leading-order SCB solution is re-
markably close to Pomraning’s variational approximation of the exact boundary condition.
Our studies using model opacities indicate that differences between the SCB and variational
boundary conditions will usually be a few percent. Differences between boundary condi-
tions satisfied by the SCB method (which uses half-cell opacities) and the LLD method
(which uses opacities at cell-average temperatures) will usually be smaller. An exception
could be cases in which the incident intensity is concentrated at frequencieshνÀ kTM ; for
such problems the asymptotic analysis predicts that the SCB solution will satisfy a bound-
ary condition that is smaller than that of the variational estimate. However, the asymptotic
analysis is suspect in such problems. This is discussed further in Section V and tested
numerically in Section VI.

One uncertainty in this analysis is the accuracy of the variational result to which we are
comparing the discrete results. We can get some feel for this by studying one-group steady-
state problems, for which the exact boundary condition can be obtained and compared
against the variational result. In such problems the variational result can be in error by as
much as 10% given an intensity incident at a grazing angle, but is within a few percent
for most incident distributions. In the more realistic (energy-dependent, transient) case,
the variational result cannot be any better than this and is probably worse. We can further
explore this question by numerical experiment, and we do so in Section VI.

E. Summary

To summarize, our analysis predicts that the multigroup discrete-ordinates SCB method
performs remarkably well on optically thick slabs (optically thick in every frequency group,
strictly speaking) even when boundary layers are not resolved by the spatial grid and initial
layers are not resolved by time steps. The leading-order solution has the correct angular and
energy distributions, as we see by comparing Eqs. (33) and (8). In the interior of the slab
the leading-order SCB temperature satisfies a reasonable and robust discretization (64) of
the equilibrium diffusion equation (12) that the exact leading-order temperature solution
satisfies. This solution satisfies an initial condition (52) that agrees closely with the exact
condition (13), and boundary conditions (65a) that agree reasonably well with a variational
estimate (65c) of the exact boundary conditions, at least in most cases.
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V. PROBLEMS THAT ARE BOTH “THICK” AND “THIN”

In the preceding section we discussed an asymptotic analysis that assumed that the
problem in question was optically thick for every frequency of interest. Here we consider
the more realistic case in which the problem is not thick in the higher-frequency groups,
but is thick in the others.

Consider an intensity incident on the left face of a slab(x= 0) that is not optically thick
(less than or equal to a few mean-free paths) at the incident frequencies. We can decompose
this problem into two simpler problems: one for the “uncollided” intensity and one for the
“emitted” intensity. The uncollided intensity is

Iun(x, ν, µ) = F(ν, µ)exp

{
−
∫ x

0
σ(ν, T(x′)) dx′

/
µ

}
, (80)

which leads to the direct energy deposition:

Q(x) =
∫ ∞

0
dν σ(ν, T(x))

∫ 1

0
dµIun(x, ν, µ). (81)

The problem for the emitted intensity has no incident photons (i.e., vacuum boundaries); it
is driven by the volumetric energy source given in Eq. (81). The asymptotic analysis is likely
to apply to this problem, which means that the emitted intensity is likely to be Planckian
(to leading order) at a material temperature that satisfies the equilibrium diffusion equation
(12). In fact, we contend that the analysisdoesapply if the emitted intensity is concentrated
mostly in frequencies for which the slab is optically very thick. Thus, we contend that
if an incident intensity is concentrated at high frequencies, the leading-order solution is
the sum of an uncollided component and a diffusive component. (Again, this assumes that
the emitted intensity is concentrated in frequencies for which the slab is optically thick.)
The uncollided component is given by Eq. (80) and the diffusive component by Eq. (12),
with the sourceQ given by Eq. (81). This implies that the SCB and LLD methods will
perform well on such problems, provided the cells are thin enough that SCB and LLD
get the attenuation in Eq. (80) approximately right. This result is likely of more practical
significance than the pure asymptotic-theory results, which required the assumption that
the problem is optically thick for all frequencies of interest.

In the next section we will test these predictions using problems with high-frequency
incident intensities.

VI. NUMERICAL RESULTS

In previous sections we made a variety of predictions about the behavior of discretized
transport solutions in optically thick radiative-transfer problems. In this section we demon-
strate this behavior by running a variety of test problems. We find that in every problem that
meets the assumptions of the analysis, the numerical solution behaves as predicted. In par-
ticular, we find that the fully implicit multigroup discrete-ordinates SCB (FI/MG/DO/SCB)
method is remarkably accurate, even given coarse spatial meshes that do not resolve bound-
ary layers or wave fronts.

A brief discussion of our solution technique is in order. We used a fully implicit
time discretization with the exception that opacities and specific heats were evaluated at
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beginning-of-step temperatures. To obtain an implicit Planckian we used a Newton–Raphson
iteration based on

B(Tk+1) ≈ B(Tk)+ (Tk+1− Tk)
∂B

∂T

∣∣∣∣
Tk

.

This leads to a linear steady-state multigroup transport problem to be solved (or approx-
imately solved) for each Newton–Raphson iteration in each time step. We approximately
solved each such problem by performing a single iteration using a one-group equation to
accelerate the multifrequency iterations. Our overall iteration strategy for a given time step
is as follows:

(i) Define T0 as the temperature at beginning of time step. Make a reasonable guess
for T1.

(ii) ComputeBg= Bg(Tk−1)+ (Tk − Tk−1)[∂Bg/∂T ]k−1 in each half-cell and group.
(iii) With known Bg, solve for the intensity in each direction, half-cell, and group.
(iv) Compute an integrated-intensity residual.
(v) Solve a one-group problem for an additive correction to the integrated intensity

[13]. (This problem requires iteration; we accelerate it using a transport-synthetic acceler-
ation method [14].) Use new integrated intensity to get new matter temperature,Tk+1.

(vi) If Tk+1 is close enough toTk and the integrated intensity is close enough to its
previous value, this ends the time step. Otherwise incrementk and return to step (ii).

In the following subsections we present numerical and theoretical results from a variety of
problems. This allows us to check many different aspects of the predictions of our theory
and in the end to draw conclusions about the accuracy of the discretization scheme we
employ. We shall begin in subsection A with several problems that employ our “model”
opacity and thus test the detailed quantitative theoretical predictions that we made for
such opacities. Subsection B is devoted to test problems with real-world opacities, with
which we study boundary-layer effects using 15 different incident distributions. The final
subsection considers a time-dependent problem with a wave front, examining the accuracy
of a coarse-mesh solution as a function of time and position.

To judge the accuracy of the coarse-mesh solution, we compare its material temperature
and radiation energy density against fine-mesh and/or theoretical results. We define the
radiation energy density as

ER(x, t) = aT4
R(x, t) =

1

c

∫ ∞
0

dν
∫ 1

−1
dµψ(x, µ, ν, t).

Here we have also defined the “radiation temperature”(TR) which is another convenient
quantity to compare. When thermal equilibrium is reached and the radiation field is in a
Planckian distribution, the radiation and material temperatures are equal.

A. Steady-State Problems Using Model Opacities

In Section IV.D, we made several sharp quantitative predictions under the assumption of
the “model” opacity of Eq. (69). To test those predictions we consider a 1-cm slab with the
constantσ0 chosen such that the slab is quite optically thick in the low-frequency groups
but only a few mean-free paths thick in the high-frequency groups. We generate multigroup
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TABLE I

16-Group Opacities, Evaluated atkT = 0.1 keV

hνhigh Model opacity SiO2 opacity
Group (keV) (cm−1) (cm−1)

1 1.7780e−2 9.1353e+7 6.2081e+5
2 3.1610e−2 2.2486e+7 5.5395e+5
3 5.6210e−2 5.9398e+6 4.9732e+5
4 1.0000e−1 1.4205e+6 4.1049e+5
5 1.7780e−1 3.0853e+5 2.9181e+5
6 3.1610e−1 6.5712e+4 1.5912e+5
7 5.6210e−1 1.5458e+4 5.4127e+4
8 1.0000e+0 3.8265e+3 3.1412e+4
9 1.7780e+0 8.2908e+2 2.4673e+4

10 3.1610e+0 1.6166e+2 1.2242e+4
11 5.6210e+0 3.0088e+1 2.2580e+3
12 1.0000e+1 5.4764e+0 3.9908e+2
13 1.7780e+1 9.8477e−1 6.7010e+1
14 3.1610e+1 1.7639e−1 1.0726e+1
15 5.6210e+1 3.1510e−2 2.8111e+0
16 1.0000e+2 5.6156e−3 2.5945e−1

Note.Group 1 starts at 0.01 keV.

cross sections by taking Rosseland averages of the model opacity over each group. We then
consider three sets of test problems with non-Planckian incident frequency distributions
that test three regimes of interest. In the first two sets of problems we employ 16 frequency
groups, the cross sections for which are shown in Table I forkT= 0.1. In the first set of
problems the incident energy is in the lowest-frequency group (1). In the second, the energy
is in an intermediate group (6) such thathν/kTM is order 1. In the third set of test problems
we employ 12 frequency groups, and the energy is incident in the highest group, for which
hν/kTMÀ 1 and the opacity is too small to satisfy the assumptions of the diffusion-limit
analysis. In each case the incident intensity impinges on the left face of the slab, while the
right face is reflecting.

A.1. Incident intensity in lowest-frequency group.If the incident intensity at a boundary
is concentrated at low frequencies (such thathν¿ kTM), then (given the model opacity) our
theory predicts that the boundary condition satisfied by the leading-order interior energy
density for SCB would be 67% of the Marshak value if there were no angular or frequency
discretization. Given the 16 frequency groups of Table I and theS16 quadrature set, the
prediction changes from 67% to approximately 64.5%. This result is predicted to be in-
dependent of the angular and frequency distribution of the incident intensity. Here we test
these theoretical predictions.

We examine the coarse-mesh interior solution given incident intensities in group one (for
whichhν¿ kTM) for three different angular distributions: normally incident, grazing-angle
incident, and isotropic. In each case the incident intensity is normalized such that energy flow
rate into the problem is equal to the flow rate from a Planckian incident intensity at a tem-
perature of 0.1 keV—only thedistributionof the incident energy is different. Thus, in each
case the “Marshak” boundary-condition temperature is 0.1 keV. The theory predicts, then,
that each problem will attain a boundary-condition temperature of(0.645)1/4× 0.1 keV,
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TABLE II

Material Temperatures from Problems with Model Opacity

Incident Angular Tm interior Tm interior
spectrum distribution (predicted) (calculated)

Group 1 Isotropic 0.0896 0.0899
Grazing 0.0896 0.0899
Normal 0.0896 0.0899

Group 6 Isotropic 0.0914 0.0919
Grazing 0.0898 0.0902
Normal 0.0923 0.0929

or 0.0896 keV. Our coarse-mesh numerical results are presented in the first three rows of
Table II. The value attained, 0.0899, is in excellent agreement with the asymptotic prediction
of 0.0896, which we note is only the leading-order term in an asymptotic expansion of the
solution. As the theory predicts, the value attained is completely independent of the angular
distribution of the incident intensity. We remark that we obtained the same results when
we direct the same energy flow rate into other low-frequency groups such thathν¿ kTM

is satisfied. That is, our numerical experiments confirm the theoretical prediction that as
long as the incident photons havehν¿ kTM , the interior solution does not depend on the
angular or frequency distribution of those photons, but only on the total energy flow rate.
Our results also confirm the theoretical prediction that in this case the correct energy density
is approximately 35% lower than the solution one would obtain from diffusion theory with
aMarshakboundary condition.

Table II shows excellent agreement between numerical results and theoretical predictions,
but it does not address the accuracy of the numerical solution. The accuracy in these problems
was comparable to that in similar problems with real opacities, which are shown later—
approximately 7% error for the grazing cases and<2% for the others. Also, this table
does not address the interesting theoretical prediction that the coarse-mesh solution in the
boundary half-cell will be inaccurate, taking on the “Marshak” value, even though the
remainder of the solution is accurate. In all cases our numerical results do exhibit this
behavior, and we give examples later in the subsection on problems with real opacities.

A.2. Incident intensity in group 6.If the incident intensity at a boundary is concentrated
at intermediate frequencies (such thathν ≈ kTM), then (given the 16-group model opacity)
our theory predicts that the boundary condition satisfied by the leading-order interior energy
density for SCB would be 64.5% of the Marshak valueplusan additional term that depends
on the frequency and angular distribution of the incident intensity. [The additional term is
the one withqSCB in Eq. (65a).]

Here we examine the coarse-mesh interior solution given incident intensities in group 6
(for whichhν ≈ kTM ) for three different angular distributions: normally incident, grazing-
angle incident, and isotropic. In each case the incident intensity is normalized such that
energy flow rate into the problem is equal to the flow rate from a Planckian incident intensity
at a temperature of 0.1 keV, which means the “Marshak” boundary-condition temperature
is 0.1 keV. Our theoretical predictions [from the discrete version of Eq. (65a)] and our
coarse-mesh numerical results are presented in the second three rows of Table II. The
differences between numerical and predicted results are approximately 0.5%, which is
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excellent, especially considering that the predictions are for the leading-order term in an
asymptotic expansion. Note that with the energy coming in at higher frequencies than in the
previous problems, we now see a dependence on the angular distribution of the photons.
This dependence is smaller for group 5 and larger for group 7, etc., becauseqSCB increases
with frequency and thus plays an increasing role. See Eq. (65a).

A.3. Incident intensity in highest group.If the incident intensity at a boundary is con-
centrated at high frequencies (such thathνÀ kTM ), then the asymptotic theory alone is
invalid, because significant radiant energy is contained in groups for which the problem is
not extremely optically thick. In this case we turn to our theory of Section V, in which we
view the radiation energy density as the sum of an uncollided component and an “emitted”
component. Provided that the matter temperature does not become extremely high, the vast
majority of the emitted photons will be in frequency groups for which the problem is opti-
cally thick. Thus, in this case the asymptotic analysis holds for the emitted component. We
can analytically estimate the uncollided component, provided we can obtain a reasonable
estimate of the opacities as a function of position in the uncollided photons’ frequency
groups. (This opacity depends on temperature, of course, which depends on the emitted
component.)

In the Appendix we describe our analytic estimate of the solution of a problem in which
the incident intensity is in a single direction in a single “thin” frequency group and the
opacity is the “model” opacity of Eq. (69). In Fig. 2a we display results from such a
problem in which the incident direction was the most normally-incident angle in theS16

quadrature set and the incident group was the 12th of 12. The figure compares the radiation
energy densities from a coarse-mesh SCB calculation, a fine-mesh SCB calculation, and our

FIG. 2a. Theoretical, fine-mesh, and coarse-mesh results: normal incident in group 12 of 12. (The theoretical
(total) curve is almost coincident with the fine-mesh curve.)
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FIG. 2b. Fine-mesh and coarse-mesh results: grazing incident in group 12 of 12.

analytical estimate. The coarse-mesh solution is plotted usingcell-averagedvalues plotted
at cell midpoints. Agreement among the analytic, fine-mesh, and coarse-mesh solutions is
clearly quite good. In Fig. 2b we present results from a similar problem, the difference being
that the incident intensity is in the most grazing direction instead of the most normal. Again
there is very good agreement between our theoretical prediction, a fine-mesh calculation,
and a coarse-mesh calculation.

The agreement of our analytic estimates with the fine-mesh calculations in these problems
strongly suggests that the theory developed in Section V is correct. The agreement with
the coarse-mesh results supports the overall conclusion of this paper, based on both theory
and numerical tests, that the FI/MG/DO/SCB discretization is a very robust method for
radiative transfer calculations.

B. Steady-State Problems with Real Opacities

In the preceding section we considered several problems using an opacity that was an
analytic function of frequency and temperature. This allowed us to make detailed quantita-
tive comparisons between our theoretical predictions and numerical results. In this section
we consider a series of test problems in which the opacities are “real” in the sense that they
are approximately those of SiO2, with a density chosen such that a 1-cm slab is optically
very thick. Each problem was run in time-dependent mode until steady state was reached.
Each problem employed anS16 Gauss–Legendre quadrature set, used the 16-group opacities
described in Table I (which shows them atkT= 0.1 keV), and was subjected to a specified
incident intensity on the left boundary and a reflecting condition on the right. The energy
flow rate into each problem was equal to that from a Planckian incident intensity at a tem-
peraturekT= 0.1 keV. The only difference among the various problems was the frequency
and direction distribution of the incident photons. (The “dilute Planckian” problems were
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TABLE III

Comparison of Coarse-Mesh Radiation Energy Densities (J/cm3) to Fine-Mesh Reference

Solutions and “Marshak” Boundary Conditions, for Various Incident Distributions (Real

Opacities)

Incident distribution Energy density, surface Energy density, interior
Marshak

Frequency Direction Reference Coarse % error Reference Coarse % error en. dens.

Planckian Isotropic 1.372e+3 1.372e+3 0.0 1.372e+3 1.372e+3 0.0 1.372e+3
Grazing 4.455e+3 1.372e+3 69.2 7.848e+2 8.413e+2 7.2 1.372e+3
Normal 1.005e+3 1.372e+3 36.5 1.683e+3 1.663e+3 1.2 1.372e+3

Group 1 Isotropic 1.407e+3 1.372e+3 2.5 1.074e+3 1.091e+3 1.6 1.372e+3
Grazing 4.485e+3 1.372e+3 69.4 7.479e+2 7.978e+2 6.7 1.372e+3
Normal 1.036e+3 1.372e+3 32.4 1.257e+3 1.258e+3 0.04 1.372e+3

Group 6 Isotropic 1.384e+3 1.372e+3 0.87 1.226e+3 1.233e+3 0.7 1.372e+3
Grazing 4.471e+3 1.372e+3 69.3 7.632e+2 8.196e+2 7.4 1.372e+3
Normal 1.015e+3 1.372e+3 35.1 1.476e+3 1.464e+3 0.8 1.372e+3

Group 16 Isotropic 1.236e+3 1.306e+3 5.7 8.292e+5 8.559e+5 3.2 1.372e+3
Grazing 4.267e+3 4.365e+3 2.3 1.088e+6 1.112e+6 2.3 1.372e+3
Normal 7.776e+2 8.275e+2 6.4 6.754e+5 7.011e+5 3.8 1.372e+3

Dilute Isotropic 8.401e+1 8.575e+1 2.1 1.129e+2 1.109e+2 2.4 8.575e+1
Planckian Grazing 2.755e+2 8.575e+1 68.9 5.386e+1 5.776e+1 7.2 8.575e+1

Normal 6.147e+1 8.575e+1 39.5 1.425e+2 1.387e+2 2.7 8.575e+1

exceptions: their energy flow rates were 1/16 the rates of the other problems.) For each
problem, we obtained a reference solution using a 200-cell logarithmically spaced grid that
resolved any boundary layers arising at the left boundary. The coarse-mesh SCB solutions
were obtained using 10 equally spaced cells.

We consider five different frequency distributions, and for each of these we consider
three different directional distributions, for a total of 15 different test problems. We sum-
marize our results in Table III, which gives reference solutions, coarse-mesh solutions, and
relative error between them, for two different spatial locations in each of the 15 problems.
The “surface” quantity requires some explanation; in the reference case it is from the cell
closest to the incident surface, which is essentially the surface quantity. In the coarse-mesh
case, however, it is simply the left half-cell value from the first cell, which is the coarse-mesh
version of a surface quantity. It is interesting to note that in all cases except the group-16
incident ones, this coarse-mesh surface solution is the Marshak boundary-condition value.
This is exactly as predicted by the theory; see, for example, Eqs. (44). However, although this
Marshak value is in considerable error relative to the reference surface value and relative
to the reference interior value, this error does not propagate to the interior. For example,
in the group-1 grazing case, this value is a factor of three lower than the reference surface
energy density and a factor of almost two higher than the reference interior solution, yet
the interior coarse-mesh solution errs by only 7%. Again, this is exactly what the theory
predicts. To further illustrate the behavior of both the reference and coarse-mesh solutions
in the presence of boundary layers, we later present plots of energy densities versus position
for some of the more interesting cases.

We begin our discussion with the Planckian/isotropic incident intensity. The solution to
this problem is that the intensity everywhere is a Planckian at 0.1 keV. Both the fine- and



    

394 ADAMS AND NOWAK

FIG. 3. Planckian/grazing-angle incident intensity, steady-state solution.

coarse-mesh solutions are exactly correct in this problem; it is essentially an infinite-medium
problem and thus not a challenge to most spatial discretizations

The Planckian/grazing solution contains a boundary layer, as shown in Fig. 3. (Note the
logarithmic spatial scale, which stretches the boundary layer out across most of the plot.)
The interior solution in this problem is lower than that of the Planckian/isotropic solution,
as predicted by the theory. This is easy to understand on physical grounds: more of the
incident photons are now absorbed near the surface, which produces a higher temperature
there, which causes a high rate of emission very close to the surface. Thus, more energy
escapes this problem than the previous one. We see from the figure that the coarse mesh does
not resolve the boundary layer at all, and thus cannot track the solution within that layer.
Nevertheless, we see from the figure that the coarse-mesh solution is quite accurate in the
interior of the problem. Turning to Table III, we see the numbers: the coarse-mesh solution
at the surface is 69% low relative to the fine-mesh surface solution; in the interior, the coarse-
mesh solution errs by only 7%. (We remark that a one-group steady-state linear problem
with a grazing-angle incident intensity would yield approximately the same error, which
in that simpler setting can be shown to stem from the difference between the variational-
estimate and exact boundary conditions [3–5]. We believe that this is the source of the
error here as well—that it is not caused by the nonlinearity, time dependence, or frequency
dependence of the problem.)

The Planckian/normal solution also contains a boundary layer, as shown in Fig. 4. In
this case, radiation penetrates deeper into the slab (on average) than in the isotropic case
before being absorbed. This leads to lower emission losses from the surface and thus higher
interior energy densities. We find again that the interior coarse-mesh solution is remarkably
accurate—1.2% error—despite completely missing the boundary layer and missing the
surface solution by 36%. If we explore why the normally incident coarse-mesh solution
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FIG. 4. Planckian/normal incident intensity, steady-state solution.

is more accurate than the grazing-incident, we eventually conclude that it is because the
variational estimate is closer to the truth whenµ is close to 1 than it is whenµ is close to
zero, not because the SCB boundary condition is closer to the variational condition.

We next consider an incident frequency distribution such that all photons appear in the
lowest frequency group, group 1. In these problems, boundary layers develop at the left
surface of the slab regardless of the incident directional distribution. The steepest boundary
layer is in the grazing-angle problem, which minimizes the average distance from the
boundary at which photons are absorbed and re-emitted, thus maximizing emission from
the left surface (and the surface temperature) and minimizing the interior energy density.
This is shown in Fig. 5. Returning to Table III, we find that the numbers are along the lines
of the previous problems: the first coarse cell has temperatures and energy densities that
are significantly lower than the correct surface quantities, but these errors do not propagate
into the interior.

Continuing with the incident intensity in group 1, we next consider an incident direction
that is almost normal to the surface (the direction in theS16 set whose cosine is closest to
unity). Results from this problem are shown in Fig. 6. Note the nonmonotonic boundary
layer that develops, and note that it begins and ends in the first one-thousandth of the
first coarse cell, which means that the coarse mesh is ridiculously far from resolving it.
Nevertheless, as predicted by theory, the coarse-mesh solution is extremely accurate in the
interior. Again, of course, the coarse solution has significant error in the cell closest to the
boundary, but this does not propagate into the interior.

We also considered an isotropic intensity incident in group 1. As one might expect, the
solutions and errors were between those of the grazing and normally incident problems.
In the boundary cell, where the coarse-mesh normally incident solution was too high and
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FIG. 5. Grazing-angle incident intensity into group 1, steady-state solution.

FIG. 6. Normal incident intensity into group 1, steady-state solution.
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the grazing-incident solution too low, the isotropic-incident coarse-mesh solution has very
little error. See Table III.

The next set of test problems has incident photons only in group 6. Coarse-mesh errors
follow the same basic trends as in the group-1 problems, as shown in Table III. Interior
solutions are generally higher in these problems than in the group-1 problems, because the
incident photons penetrate farther on average before being absorbed, and thus fewer emitted
photons are lost through the surface. Comparing the coarse-mesh and reference solutions,
we again see that the coarse-mesh solutions have considerable error in the first cell but are
remarkably accurate in the interior, as predicted by the theory.

Finally, we consider the case in which the incident intensity is concentrated at high
frequencies. Here we do not expect the asymptotic theory to be correct, for the problem is
not optically thick to high-frequency photons. However, as discussed previously, we expect
the leading-order solution to be the sum of an uncollided component and an “emitted”
component, with the asymptotic theory applying to the “emitted” component if the emitted
intensities see the slab as very thick. Furthermore, the uncollided solution should be well
represented by a coarse grid if the cell size is sufficiently fine (in high-frequency mfps) to
represent the attenuation of the incident intensity.

Given that the incident intensity is deposited in the highest-frequency group (group
16), our numerical results indicate that the coarse grid solution is extremely accurate in the
interior of the slab. Referring to Table III, the errors in the radiation energy density are<4%
for the three angular distributions and the errors in the material temperature are<1%.

In Fig. 7 we examine the grazing-angle incident case which shows that the interior tem-
perature is much larger thanTM (which is 0.1 keV), indicating a very important uncollided
component. The coarse mesh zone width, which is<0.4 mfps in group 16, accurately

FIG. 7. Grazing-angle incident intensity into group 16, steady-state solution.
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resolves this uncollided component and thus obtains an accurate source of emitted photons.
As detailed in our “thick/thin” theory, this is all that is needed for the method to obtain an
accurate coarse-mesh solution.

In practical applications it is sometimes the case that the source of radiation is some
distance from the target of interest such that the target sees a “dilute” Planckian frequency
spectrum. In our final set of steady-state problems we let the incident intensity equal a
constant (1/16) multiplied byB(ν, T0), with T0= 0.1 keV. The errors we see in Table III
for this dilute Planckian incident spectrum are comparable to those in previous cases.

D. Transient Problems

Finally, we show a transient problem to illustrate that the FI/MG/DO/SCB method is
accurate even when the mesh does not resolve wavefronts. We compare the time evolution of
the solution for the case of a monoenergetic source incident on a 1-cm slab. For this transient
problem, the specified incident flux is on the left boundary and a vacuum is on the right
boundary. The radiation transport is modeled with the SCB spatial discretization, 12 energy
groups (again using the SiO2 opacities), and anS8 quadrature set. The reference solution
is obtained by resolving the boundary layers [at both boundaries] for all photon energy
groups, using 1000 cells in each of the intervals: 0< x< 0.001, 0.001< x< 0.999, and
0.999< x< 1.0. The reference grid also resolves the wavefront away from boundaries. We
obtained “coarse-mesh” solutions using 10 equally spaced cells. To measure the accuracy
of the coarse mesh solution, we have compared the energy-integrated radiation intensity
against the reference solution at three times during the transient.

This is a fully nonlinear problem in that the opacities are updated at every time step
based on the latest estimate of the material temperature, and it is therefore a very rigorous
test of the SCB method. In this time-dependent scenario we ask, given only the same
initial and boundary conditions, whether the SCB scheme using a coarse mesh produces
accurate results during the transient phase. In Fig. 8 we plot the spatial distribution of the
integrated radiation intensity at three different times during the heating of the slab. We
observe remarkable agreement with the reference solution for the interior points—errors
are<6%—despite large errors at the left boundary [about 45%]. [We have plotted only
cell-averaged quantities from the coarse-mesh solution.] Errors in the material temperature
are also high for the left boundary point (about 20%), but are only about 2% for interior
points. These results demonstrate that even with a very coarse grid (that does not resolve the
boundary layers) we obtain excellent time-dependent results in the interior of the problem.

VII. DISCUSSION

This paper was motivated by the need to obtain accurate numerical solutions to (nonlinear)
radiative transfer problems. Toward that end we have analyzed and tested a particular numer-
ical method for radiative transfer problems in which the photon intensity is a function of one
spatial coordinate, one direction variable, frequency, and time. The method discretizes the
spatial variable using a subcell-balance method called SCB, the direction variable using the
discrete-ordinates method, the frequency variable using the multigroup approximation, and
the time variable using a method that is essentially fully implicit (FI/MG/DO/SCB for short).

Our choice of spatial discretization was motivated by the excellent behavior of the
SCB/discrete-ordinates method in thick, diffusive, one-group, steady-state problems [9,10].
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FIG. 8. Spatial distribution of integrated radiation intensity at three times [t1, t2, t3] during the heating of
a slab by a monoenergetic beam of radiation incident at a grazing angle. The vertical line segment atx= 0 is
actually the solution in the boundary layer.

SCB is less accurate away from the thick diffusive limit, even in one-group steady-state
problems [10,11], so it is not the final answer to spatial discretization of radiative trans-
fer problems. (It does have second-order truncation error in the fine-mesh limit, but its
intermediate-mesh performance is relatively poor.) However, it is possible to develop re-
lated spatial discretizations that produce the SCB solution in thick diffusive regions but
perform much better in other limits [10,11]. Thus, we study the comparatively simple
FI/MG/DO/SCB method not only for its own intrinsic interest, but also for its impact on
the development and understanding of other (more complicated and more accurate) spatial
discretizations that behave like SCB in the thick diffusive limit.

Our analysis and results indicate that if a problem is optically thick in all frequency groups
that contain significant radiant energy, the FI/MG/DO/SCB method is quite accurate. This
is true, remarkably, even when there are sharp boundary layers that are not resolved by the
spatial grid. Our analysis and results further indicate that if a problem is optically thin in
frequency groups populated by the incident intensity, but thick to photons that are emitted
by the matter in the problem, the numerical method is again quite accurate. We emphasize
that our analyses and results apply to realistic problems—there were no simplifications
made, for example, to remove the nonlinearity. The most significant simplifying factor is
that we considered only one spatial dimension.

The results in this paper complement and extend those recently obtained by Morel
et al.[7]. The SCB scheme analyzed here is slightly different from the LLD scheme analyzed
by Morelet al. in that it uses two different opacities per cell; our results show that this leads
to slight (but not significant) differences in the two methods’ performances on unresolved
boundary layers. We have also analyzed the initial layer, showing that the FI/MG/DO/SCB
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method performs well even with unresolved initial layers. Since this analysis did not de-
pend on having two opacities per cell, it holds also for the FI/MG/DO/LLD method. Our
analysis of the SCB and LLD performances on unresolved boundary layers led to sharp
quantitative predictions for a variety of scenarios; a large suite of detailed numerical cal-
culations confirmed all of these predictions. We also included transient test problems with
unresolved wavefronts, showing that the robustness of the FI/MG/DO/SCB scheme holds
for such problems (which basically have moving boundary and initial layers). Finally, we
included the first asymptotic analysis, to our knowledge, of radiative transfer problems that
are optically thin in some frequency groups but optically thick in others. Our theoretical pre-
dictions were quite sharp, including an analytic solution of problem with model opacities,
and were precisely confirmed by numerical testing.

The results presented here and by Morelet al. suggest several areas for further study.
First, given that the most significant simplification here was the assumption of 1D slab
geometry, a logical next step is to extend our analyses to multidimensional problems. We
are actively pursuing this. Second, this analysis should be applied to other discretization
schemes that have been used or proposed for radiative transfer. Third, the analysis should
be extended to examine the radiation intensity that isemittedfrom optically thick slabs.
Although the present analysis is silent on this subject, we are sure that the intensity emitted
from the surface at an unresolved boundary layer has an incorrect distribution in frequency
and direction. Further research should be able to quantify this.

APPENDIX

Analytic Estimate of Solution in Thick/Thin Problem

In this Appendix we describe our technique for analytically solving (with one approxi-
mation) a multigroup radiative transfer problem that is driven by a monodirectional beam
in a high-frequency group—a group for which the problem is not very optically thick. The
basic idea is to recognize that the radiation intensity has two components: an uncollided
component and an “emitted” component. The emitted photons are likely to be in frequency
groups for which the problem is optically thick; further, this emission source varies on the
scale of a high-frequency mean-free path, which we assume is resolved by the spatial grid.
Thus, the asymptotic diffusion-limit analysis developed in the body of this paper should
apply to the emitted component.

The problem we wish to solve is

µm
∂ψm,g

∂x
+ σg(T(x))ψm,g(x) = σg(T(x))Bg(T(x)), (A1.a)

2
∑

g

σg(T(x))Bg(T(x)) =
∑

g

σg(T(x))
∑

m

wmψm,g(x), (A1.b)

ψm,g(0)= I0, for m=m0 andµm> 0, and forg= g0= high-frequency group, (A1.c)

ψm,g(X)=ψn,g(X), µm=−µn< 0, all g. (A1.d)

We begin with expressions for the uncollided intensity:
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−
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0
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′))/µm0

}
, (A2.a)
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ψu
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]/
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}
,

n0:µn0 =−µm0. (A2.b)

The emitted component satisfies

µm
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+ σg(T(x))ψ

e
m,g(x) = σg(T(x))Bg(T(x)), (A3.a)
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]
, (A3.b)

ψe
m,g(0)= 0, µm> 0, all g, (A3.c)

ψe
m,g(X)=ψe

m,g(X), µm=−µn< 0, all g. (A3.d)

The desired solution is the sum of the emitted and uncollided intensities.
We shall assume that the temperature distribution in the slab is such that the emitted

photons are primarily in frequency groups for which the slab is optically thick. In this case
the asymptotic analysis developed in this paper applies to the emitted component, and we
find that the leading-order emitted component is Planckian,

ψe(0)
m,g (x) = Bg

(
T (0)(x)

)
, (A4)

where the leading-order temperature satisfies an equilibrium diffusion equation:

− d

dx

ac

3σR
(
T (0)(x)

) d
[(

T (0)(x)
)4
]

dx
= σg0

(
T (0)(x)
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wm0

[
ψu
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n0,g(x)

]
. (A5)

[The subscriptR on the opacity denotes the Rosseland mean.] The boundary conditions are
that the leading-order temperature goes to zero atx= 0 and its derivative with respect tox
goes to zero atx= X.

If we can solve for the uncollided intensity and then somehow solve the equilibrium
diffusion equation for the leading-order temperature, we will have solved the entire problem.

We shall make one approximation in our solution of Eq. (A2) for the uncollided intensity:

exp

{
−
∫ x

0
dx′σg0(T(x

′))/µm0

}
≈ exp

{−σg0(T̄)x/µm0

}≡ exp
{−σ̄g0x/µm0

}
. (A6)

That is, for purposes of computing the incident intensity, we shall use a constant opacity
evaluated at some average temperature. Then we obtain[
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]
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µm0

)
. (A7)
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We shall now solve Eq. (A5), the equilibrium diffusion equation, with Eq. (A7) substituted
on the right-hand side. At this point we must assume something about the opacities, and as
described in the body of the paper, we assume a model opacity of the form

σ(ν, T) = ρσ0
1− e−hν/kT

(hν)3
. (A8)

Given this functional form, and assuming that the multigroup structure is fine enough that
group sums accurately approximate their respective integrals, we have for the Rosseland
mean

σR(T) =
∫∞
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0 dν 1
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1
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2(ζ(6)+ ζ(7))
, (A9)

whereζ( j ) is the Reimann zeta function:

ζ( j ) =
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n=1

1

nj
. (A10)

We can simplify Eq. (A9) to find

1

σR(T)
= 1
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= 1
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We use the chain rule to find
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We combine Eqs. (A11) and (A12),
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where

A ≡ ack3

ρσ0
(120)(0.9358. . .). (A14)

Now if we put everything together, our equilibrium diffusion equation becomes
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We shall once again invoke the approximation that the group-g0 opacity is replaced by a
suitable average, which we call ¯σg0. The boundary conditions on the solution, which is now
the leading-order temperature to the seventh power, are that it vanishes atx= 0 and itsx-
derivative vanishes atx= X. The solution is not difficult to obtain; it is

(
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We employed this expression in a spreadsheet and took its (1/7)th power to obtain our
analytic estimate of the leading-order temperature in the slab. The expression depends on
the average opacity, ¯σg0, so to begin we simply insertedσg0 evaluated at some reasonable
temperature. At that point everything was known and we could plot the uncollided energy
density, the emitted energy density, the total radiation energy density, and the matter tem-
perature as functions of position. Given the matter temperature distribution, we improved
our estimate of an average temperature at which to evaluateσg0 and re-generated the plots.
(The plots were not very sensitive to the temperature we chose for ¯σg0, so this iteration
converged quickly.) This is how Figs. 2a and 2b were generated.
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